242 research outputs found

    Flooding control in route discovery for reactive routing in mobile ad hoc networks

    Get PDF
    Routing is a very important function in the network layer of the OSI model for wired and wireless networks. Mobile Ad hoc Networks (MANETs) are a collection of wireless nodes forming a temporary network that is supposed to be constructed on the fly without infrastructure and prior setup. This fashion of setup demands that the nodes act as routers for other nodes. This necessitates the need of a robust dynamic routing scheme. Routing protocols are classified into three main categories: proactive, reactive, and hybrid. Reactive routing has been the focus of research in recent years due to its control traffic overhead reduction. Reactive routing operation involves three main steps: route discovery, packet delivery, and route maintenance. If a source node, initiating the message, knows the route to the destination, this route is used to transmit the message; otherwise, the source node will initiate a route discovery algorithm to build the route, which highlights the importance of this phase of the on-demand routing process. This thesis work will present a route discovery algorithm that will try to find the route between the sender and the intended receiver in relatively short periods of end-to-end delay, least amount of control traffic overhead, and a loop free path between the two communicating parties. Furthermore, performance comparison between the proposed algorithm and other standard algorithms, namely basic flooding and flooding with self-pruning, will be conducted. The proposed route discovery algorithm can be used in several approaches serving ad hoc network setup, where connectivity establishment and maintenance is important

    A Neural Radiance Field-Based Architecture for Intelligent Multilayered View Synthesis

    Get PDF
    A mobile ad hoc network is made up of a number of wireless portable nodes that spontaneously come together en route for establish a transitory network with no need for any central management. A mobile ad hoc network (MANET) is made up of a sizable and reasonably dense community of mobile nodes that travel across any terrain and rely solely on wireless interfaces for communication, not on any well before centralized management. Furthermore, routing be supposed to offer a method for instantly delivering data across a network between any two nodes. Finding the best packet routing from across infrastructure is the major issue, though. The proposed protocol's major goal is to identify the least-expensive nominal capacity acquisition that assures the transportation of realistic transport that ensures its durability in the event of any node failure. This study suggests the Optimized Route Selection via Red Imported Fire Ants (RIFA) Strategy as a way to improve on-demand source routing systems. Predicting Route Failure and energy Utilization is used to pick the path during the routing phase. Proposed work assess the results of the comparisons based on performance parameters like as energy usage, packet delivery rate (PDR), and end-to-end (E2E) delay. The outcome demonstrates that the proposed strategy is preferable and increases network lifetime while lowering node energy consumption and typical E2E delay under the majority of network performance measures and factors

    Implementation of Multicast Routing Protocol on MANET

    Get PDF
    Underwater wireless sensor networks (UWSNs) have been showed as a promising technology to monitor and explore the oceans in lieu of traditional undersea wireline instruments. Nevertheless, the data gathering of UWSNs is still severely limited because of the acoustic channel communication characteristics. One way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and the highly dynamic network topology. In this paper, we propose the GEDAR routing protocol for UWSNs. GEDAR is an anycast, geographic and opportunistic routing protocol that routes data packets from sensor nodes to multiple sonobuoys (sinks) at the sea�s surface. When the node is in a communication void region, GEDAR switches to the recovery mode procedure which is based on topology control through the depth adjustment of the void nodes, instead of the traditional approaches using control messages to discover and maintain routing paths along void region

    INTERMITTENTLY CONNECTED DELAY-TOLERANT WIRELESS SENSOR NETWORKS

    Get PDF
    Intermittently Connected Delay-Tolerant Wireless Sensor Networks (ICDT-WSNs), a branch of Wireless Sensor Networks (WSNs), have features of WSNs and the intermittent connectivity of Opportunistic Networks. The applications of ICDT-WSNs are increasing in recent years; however, the communication protocols suitable for this category of networks often fall short. Most of the existing communication protocols are designed for either WSNs or Opportunistic Networks with sufficient resources and tend to be inadequate for direct use in ICDT-WSNs. In this dissertation, we study ICDT-WSNs from the perspective of the characteristics, chal- lenges and possible solutions. A high-level overview of ICDT-WSNs is given, followed by a study of existing work and our solutions to address the problems of routing, flow control, error control, and storage management. The proposed solutions utilize the utility level of nodes and the connectedness of a network. In addition to the protocols for information transmissions to specific destinations, we also propose efficient mechanisms for information dissemination to arbitrary destinations. The study shows that our proposed solutions can achieve better performance than other state of the art communication protocols without sacrificing energy efficiency

    A Multi-hop Mobile Networking Test-bed for Telematics

    Get PDF
    An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the realworld performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road
    • …
    corecore