281 research outputs found

    Semantic technologies for supporting KDD processes

    Get PDF
    209 p.Achieving a comfortable thermal situation within buildings with an efficient use of energy remains still an open challenge for most buildings. In this regard, IoT (Internet of Things) and KDD (Knowledge Discovery in Databases) processes may be combined to solve these problems, even though data analysts may feel overwhelmed by heterogeneity and volume of the data to be considered. Data analysts could benefit from an application assistant that supports them throughout the KDD process. This research work aims at supporting data analysts through the different KDD phases towards the achievement of energy efficiency and thermal comfort in tertiary buildings. To do so, the EEPSA (Energy Efficiency Prediction Semantic Assistant) is proposed, which aids data analysts discovering the most relevant variables for the matter at hand, and informs them about relationships among relevant data. This assistant leverages Semantic Technologies such as ontologies, ontology-driven rules and ontology-driven data access. More specifically, the EEPSA ontology is the cornerstone of the assistant. This ontology is developed on top of three ODPs (Ontology Design Patterns) and it is designed so that its customization to address similar problems in different types of buildings can be approached methodically

    Human-Intelligence and Machine-Intelligence Decision Governance Formal Ontology

    Get PDF
    Since the beginning of the human race, decision making and rational thinking played a pivotal role for mankind to either exist and succeed or fail and become extinct. Self-awareness, cognitive thinking, creativity, and emotional magnitude allowed us to advance civilization and to take further steps toward achieving previously unreachable goals. From the invention of wheels to rockets and telegraph to satellite, all technological ventures went through many upgrades and updates. Recently, increasing computer CPU power and memory capacity contributed to smarter and faster computing appliances that, in turn, have accelerated the integration into and use of artificial intelligence (AI) in organizational processes and everyday life. Artificial intelligence can now be found in a wide range of organizational systems including healthcare and medical diagnosis, automated stock trading, robotic production, telecommunications, space explorations, and homeland security. Self-driving cars and drones are just the latest extensions of AI. This thrust of AI into organizations and daily life rests on the AI community’s unstated assumption of its ability to completely replicate human learning and intelligence in AI. Unfortunately, even today the AI community is not close to completely coding and emulating human intelligence into machines. Despite the revolution of digital and technology in the applications level, there has been little to no research in addressing the question of decision making governance in human-intelligent and machine-intelligent (HI-MI) systems. There also exists no foundational, core reference, or domain ontologies for HI-MI decision governance systems. Further, in absence of an expert reference base or body of knowledge (BoK) integrated with an ontological framework, decision makers must rely on best practices or standards that differ from organization to organization and government to government, contributing to systems failure in complex mission critical situations. It is still debatable whether and when human or machine decision capacity should govern or when a joint human-intelligence and machine-intelligence (HI-MI) decision capacity is required in any given decision situation. To address this deficiency, this research establishes a formal, top level foundational ontology of HI-MI decision governance in parallel with a grounded theory based body of knowledge which forms the theoretical foundation of a systemic HI-MI decision governance framework

    A conceptual framework for semantic web-based ecommerce

    Get PDF

    Creation and extension of ontologies for describing communications in the context of organizations

    Get PDF
    Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer ScienceThe use of ontologies is nowadays a sufficiently mature and solid field of work to be considered an efficient alternative in knowledge representation. With the crescent growth of the Semantic Web, it is expectable that this alternative tends to emerge even more in the near future. In the context of a collaboration established between FCT-UNL and the R&D department of a national software company, a new solution entitled ECC – Enterprise Communications Center was developed. This application provides a solution to manage the communications that enter, leave or are made within an organization, and includes intelligent classification of communications and conceptual search techniques in a communications repository. As specificity may be the key to obtain acceptable results with these processes, the use of ontologies becomes crucial to represent the existing knowledge about the specific domain of an organization. This work allowed us to guarantee a core set of ontologies that have the power of expressing the general context of the communications made in an organization, and of a methodology based upon a series of concrete steps that provides an effective capability of extending the ontologies to any business domain. By applying these steps, the minimization of the conceptualization and setup effort in new organizations and business domains is guaranteed. The adequacy of the core set of ontologies chosen and of the methodology specified is demonstrated in this thesis by its effective application to a real case-study, which allowed us to work with the different types of sources considered in the methodology and the activities that support its construction and evolution

    Ontology-based personalized performance evaluation and dietary recommendation for weightlifting.

    Get PDF
    Studies in weightlifting have been characterized by unclear results and information paucity, mainly due to the lack of information sharing between athletes, coaches, biomechanists, physiologists and nutritionists. Becoming successful in weightlifting performance requires a unique physiological and biomechanics profile based on a distinctive combination of muscular strength, muscular power, flexibility, and lifting technique. An effective training which is carefully designed and monitored, is needed for accomplishment of consistent high performance. While it takes years of dedicated training, diet is also critical as optimal nutrition is essential for peak performance. Nutritional misinformation can do as much harm to ambitious athletes as good nutrition can help. In spite of several studies on nutrition guidelines for weightlifting training and competition as well as on design and implementation of weightlifting training programs, to the best of authors' knowledge, there is no attempt to semantically model the whole "training-diet-competition" cycle by integrating training, biomechanics, and nutrition domains.This study aims to conceive and design an ontology-enriched knowledge model to guide and support the implementation of "Recommender system of workout and nutrition forweightlifters". In doing so, it will propose: (i) understanding the weightlifting training system, from both qualitative and quantitative perspectives, following a modular ontology modeling, (ii) understanding the weightlifting diet following a modular ontology modeling, (iii) semantically integrating weightlifting and nutrition ontologies to mainly promote nutrition and weightlifting snatch exercises interoperability, (iv) extending modular ontology scope by mining rules while analyzing open data from the literature, and (v) devising reasoning capability toward an automated weightlifting "training-diet-competition" cycle supported by previously mined rulesTo support the above claims, two main artefacts were generated such as: (i) a weightliftingnutritional knowledge questionnaire to assess Thai weightlifting coaches' and athletes'knowledge regarding the weightlifting "training-diet-competition" cycle and (ii) a dual ontologyoriented weightlifting-nutrition knowledge model extended with mined rules and designed following a standard ontology development methodology.Studies in weightlifting have been characterized by unclear results and information paucity, mainly due to the lack of information sharing between athletes, coaches, biomechanists, physiologists and nutritionists. Becoming successful in weightlifting performance requires a unique physiological and biomechanics profile based on a distinctive combination of muscular strength, muscular power, flexibility, and lifting technique. An effective training which is carefully designed and monitored, is needed for accomplishment of consistent high performance. While it takes years of dedicated training, diet is also critical as optimal nutrition is essential for peak performance. Nutritional misinformation can do as much harm to ambitious athletes as good nutrition can help. In spite of several studies on nutrition guidelines for weightlifting training and competition as well as on design and implementation of weightlifting training programs, to the best of authors' knowledge, there is no attempt to semantically model the whole "training-diet-competition" cycle by integrating training, biomechanics, and nutrition domains.This study aims to conceive and design an ontology-enriched knowledge model to guide and support the implementation of "Recommender system of workout and nutrition forweightlifters". In doing so, it will propose: (i) understanding the weightlifting training system, from both qualitative and quantitative perspectives, following a modular ontology modeling, (ii) understanding the weightlifting diet following a modular ontology modeling, (iii) semantically integrating weightlifting and nutrition ontologies to mainly promote nutrition and weightlifting snatch exercises interoperability, (iv) extending modular ontology scope by mining rules while analyzing open data from the literature, and (v) devising reasoning capability toward an automated weightlifting "training-diet-competition" cycle supported by previously mined rulesTo support the above claims, two main artefacts were generated such as: (i) a weightliftingnutritional knowledge questionnaire to assess Thai weightlifting coaches' and athletes'knowledge regarding the weightlifting "training-diet-competition" cycle and (ii) a dual ontologyoriented weightlifting-nutrition knowledge model extended with mined rules and designed following a standard ontology development methodology

    Policy-Driven Governance in Cloud Service Ecosystems

    Get PDF
    Cloud application development platforms facilitate new models of software co-development and forge environments best characterised as cloud service ecosystems. The value of those ecosystems increases exponentially with the addition of more users and third-party services. Growth however breeds complexity and puts reliability at risk, requiring all stakeholders to exercise control over changes in the ecosystem that may affect them. This is a challenge of governance. From the viewpoint of the ecosystem coordinator, governance is about preventing negative ripple effects from new software added to the platform. From the viewpoint of third-party developers and end-users, governance is about ensuring that the cloud services they consume or deliver comply with requirements on a continuous basis. To facilitate different forms of governance in a cloud service ecosystem we need governance support systems that achieve separation of concerns between the roles of policy provider, governed resource provider and policy evaluator. This calls for better modularisation of the governance support system architecture, decoupling governance policies from policy evaluation engines and governed resources. It also calls for an improved approach to policy engineering with increased automation and efficient exchange of governance policies and related data between ecosystem partners. The thesis supported by this research is that governance support systems that satisfy such requirements are both feasible and useful to develop through a framework that integrates Semantic Web technologies and Linked Data principles. The PROBE framework presented in this dissertation comprises four components: (1) a governance ontology serving as shared ecosystem vocabulary for policies and resources; (2) a method for the definition of governance policies; (3) a method for sharing descriptions of governed resources between ecosystem partners; (4) a method for evaluating governance policies against descriptions of governed ecosystem resources. The feasibility and usefulness of PROBE are demonstrated with the help of an industrial case study on cloud service ecosystem governance
    • …
    corecore