529 research outputs found

    UNFIS: A Novel Neuro-Fuzzy Inference System with Unstructured Fuzzy Rules for Classification

    Full text link
    An important constraint of Fuzzy Inference Systems (FIS) is their structured rules defined based on evaluating all input variables. Indeed, the length of all fuzzy rules and the number of input variables are equal. However, in many decision-making problems evaluating some conditions on a limited set of input variables is sufficient to decide properly (unstructured rules). Therefore, this constraint limits the performance, generalization, and interpretability of the FIS. To address this issue, this paper presents a neuro-fuzzy inference system for classification applications that can select different sets of input variables for constructing each fuzzy rule. To realize this capability, a new fuzzy selector neuron with an adaptive parameter is proposed that can select input variables in the antecedent part of each fuzzy rule. Moreover, in this paper, the consequent part of the Takagi-Sugeno-Kang FIS is also changed properly to consider only the selected set of input variables. To learn the parameters of the proposed architecture, a trust-region-based learning method (General quasi-Levenberg-Marquardt (GqLM)) is proposed to minimize cross-entropy in multiclass problems. The performance of the proposed method is compared with some related previous approaches in some real-world classification problems. Based on these comparisons the proposed method has better or very close performance with a parsimonious structure consisting of unstructured fuzzy

    Sparse Matrix Approach in Neural Networks for Effective Medical Data Sets Classifications

    Get PDF
    In this paper, a hybrid intelligent system that consists of the sparse matrix approach incorporated in neural network learning model as a decision support tool for medical data classification is presented. The main objective of this research is to develop an effective intelligent system that can be used by medical practitioners to accelerate diagnosis and treatment processes. The sparse matrix approach incorporated in neural network learning algorithm for scalability, minimize higher memory storage capacity usage, enhancing implementation time and speed up the analysis of the medical data classification problem. The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same time, alleviate their limitations. The proposed intelligent classification system maximizes the intelligently classification of medical data and minimizes the number of trends inaccurately identified. To evaluate the effectiveness of the hybrid intelligent system, three benchmark medical data sets, viz., Hepatitis, SPECT Heart and Cleveland Heart from the UCI Repository of Machine Learning, are used for evaluation. A number of useful performance metrics in medical applications which include accuracy, sensitivity, specificity. The results were analyzed and compared with those from other methods published in the literature. The experimental outcomes positively demonstrate that the hybrid intelligent system was effective in undertaking medical data classification tasks

    Novel Levenberg–Marquardt based learning algorithm for unmanned aerial vehicles

    Get PDF
    In this paper, Levenberg–Marquardt inspired sliding mode control theory based adaptation laws are proposed to train an intelligent fuzzy neural network controller for a quadrotor aircraft. The proposed controller is used to control and stabilize a quadrotor unmanned aerial vehicle in the presence of periodic wind gust. A proportional-derivative controller is firstly introduced based on which fuzzy neural network is able to learn the quadrotor's control model on-line. The proposed design allows handling uncertainties and lack of modelling at a computationally inexpensive cost. The parameter update rules of the learning algorithms are derived based on a Levenberg–Marquardt inspired approach, and the proof of the stability of two proposed control laws are verified by using the Lyapunov stability theory. In order to evaluate the performance of the proposed controllers extensive simulations and real-time experiments are conducted. The 3D trajectory tracking problem for a quadrotor is considered in the presence of time-varying wind conditions

    Forecasting Automobile Demand Via Artificial Neural Networks & Neuro-Fuzzy Systems

    Get PDF
    The objective of this research is to obtain an accurate forecasting model for the demand for automobiles in Iran\u27s domestic market. The model is constructed using production data for vehicles manufactured from 2006 to 2016, by Iranian car makers. The increasing demand for transportation and automobiles in Iran necessitated an accurate forecasting model for car manufacturing companies in Iran so that future demand is met. Demand is deduced as a function of the historical data. The monthly gold, rubber, and iron ore prices along with the monthly commodity metals price index and the Stock index of Iran are Artificial neural network (ANN) and artificial neuro-fuzzy system (ANFIS) have been utilized in many fields such as energy consumption and load forecasting fields. The performances of the methodologies are investigated towards obtaining the most accurate forecasting model in terms of the forecast Mean Absolute Percentage Error (MAPE). It was concluded that the feedforward multi-layer perceptron network with back-propagation and the Levenberg-Marquardt learning algorithm provides forecasts with the lowest MAPE (5.85%) among the other models. Further development of the ANN network based on more data is recommended to enhance the model and obtain more accurate networks and subsequently improved forecasts

    Application of soft computing models with input vectors of snow cover area in addition to hydro-climatic data to predict the sediment loads

    Get PDF
    The accurate estimate of sediment load is important for management of the river ecosystem, designing of water infrastructures, and planning of reservoir operations. The direct measurement of sediment is the most credible method to estimate the sediments. However, this requires a lot of time and resources. Because of these two constraints, most often, it is not possible to continuously measure the daily sediments for most of the gauging sites. Nowadays, data-based sediment prediction models are famous for bridging the data gaps in the estimation of sediment loads. In data-driven sediment predictions models, the selection of input vectors is critical in determining the best structure of models for the accurate estimation of sediment yields. In this study, time series inputs of snow cover area, basin effective rainfall, mean basin average temperature, and mean basin evapotranspiration in addition to the flows were assessed for the prediction of sediment loads. The input vectors were assessed with artificial neural network (ANN), adaptive neuro-fuzzy logic inference system with grid partition (ANFIS-GP), adaptive neuro-fuzzy logic inference system with subtractive clustering (ANFIS-SC), adaptive neuro-fuzzy logic inference system with fuzzy c-means clustering (ANFIS-FCM), multiple adaptive regression splines (MARS), and sediment rating curve (SRC) models for the Gilgit River, the tributary of the Indus River in Pakistan. The comparison of different input vectors showed improvements in the prediction of sediments by using the snow cover area in addition to flows, effective rainfall, temperature, and evapotranspiration. Overall, the ANN model performed better than all other models. However, as regards sediment load peak time series, the sediment loads predicted using the ANN, ANFIS-FCM, and MARS models were found to be closer to the measured sediment loads. The ANFIS-FCM performed better in the estimation of peak sediment yields with a relative accuracy of 81.31% in comparison to the ANN and MARS models with 80.17% and 80.16% of relative accuracies, respectively. The developed multiple linear regression equation of all models show an R2^{2} value of 0.85 and 0.74 during the training and testing period, respectively

    Bacterial Memetic Algorithm Trained Fuzzy System-Based Model of Single Weld Bead Geometry

    Get PDF
    This article presents a fuzzy system-based modeling approach to estimate the weld bead geometry (WBG) from the welding process variables (WPVs) and to achieve a specific weld bead shape. The bacterial memetic algorithm (BMA) is applied to solve these problems in two different roles, as a supervised trainer, and as an optimizer. As a supervised trainer, the BMA is applied to tune two different WBG models. The bead geometry properties (BGP) model follows a traditional approach providing the WBG properties as outputs. The direct profile measurement (DPM) model describes the bead profiles points by a non-linear function realized in the form of fuzzy rules. As an optimizer, the BMA utilizes the developed fuzzy systems to find the solution sets of WPVs to acquire the desired WBG. The best performance is achieved by applying six rules in the BGP model and eleven rules in the DPM model. The results indicate that the normalized root means square error for the validation data set lies in the range of 0:40 - 1:56% for the BGP model and 4:49 - 7:52% for the DPM model. The comparative analysis suggests that the BGP model estimates the BWG in a superior manner when several WPVs are altered. The developed fuzzy systems provide a tool for interpreting the effects of the WPVs. The developed optimizer provides multiple valid set of WPVs to produce the desired WBG, thus supporting the selection of those process variables in applications

    Short-term wind speed forecasting by an adaptive network-based fuzzy inference system (ANFIS): an attempt towards an ensemble forecasting method

    Get PDF
    Accurate Wind speed forecasting has a vital role in efficient utilization of wind farms. Wind forecasting could be performed for long or short time horizons. Given the volatile nature of wind and its dependent on many geographical parameters, it is difficult for traditional methods to provide a reliable forecast of wind speed time series. In this study, an attempt is made to establish an efficient adaptive network-based fuzzy interference (ANFIS) for short-term wind speed forecasting. Using the available data sets in the literature, the ANFIS network is constructed, tested and the results are compared with that of a regular neural network, which has been forecasted the same set of dataset in previous studies. To avoid trial-and-error process for selection of the ANFIS input data, the results of autocorrelation factor (ACF) and partial auto correlation factor (PACF) on the historical wind speed data are employed. The available data set is divided into two parts. 50% for training and 50% for testing and validation. The testing part of data set will be merely used for assessing the performance of the neural network which guarantees that only unseen data is used to evaluate the forecasting performance of the network. On the other hand, validation data could be used for parameter-setting of the network if required. The results indicate that ANFIS could not outperform ANN in short-term wind speed forecasting though its results are competitive. The two methods are hybridized, though simply by weightage, and the hybrid methods shows slight improvement comparing to both ANN and ANFIS results. Therefore, the goal of future studies could be implementing ANFIS and ANNs in a more comprehensive ensemble method which could be ultimately more robust and accurat
    • …
    corecore