351 research outputs found

    Leveled Fully Homomorphic Signatures from Standard Lattices

    Get PDF
    In a homomorphic signature scheme, a user Alice signs some large data xx using her secret signing key and stores the signed data on a server. The server can then run some computation y=g(x)y=g(x) on the signed data and homomorphically produce a short signature σ\sigma. Anybody can verify the signature using Alice\u27s public verification key and become convinced that yy is the correct output of the computation gg over Alice\u27s data, without needing to have the underlying data itself. In this work, we construct the first leveled fully homomorphic signature schemes that can evaluate arbitrary circuits over signed data, where only the maximal depth dd of the circuit needs to be fixed a priori. The size of the evaluated signature grows polynomially in dd, but is otherwise independent of the circuit size or the data size. Our solutions are based on the hardness of the small integer solution (SIS) problem, which is in turn implied by the worst-case hardness of problems in standard lattices. We get a scheme in the standard model, albeit with large public parameters whose size must exceed the total size of all signed data. In the random-oracle model, we get a scheme with short public parameters. These results offer a significant improvement in capabilities and assumptions over the best prior homomorphic signature scheme due to Boneh and Freeman (Eurocrypt \u2711). As a building block of independent interest, we introduce a new notion called homomorphic trapdoor functions (HTDF). We show to how construct homomorphic signatures using HTDFs as a black box. We construct HTDFs based on the SIS problem by relying on a recent technique developed by Boneh et al. (Eurocrypt \u2714) in the context of attribute based encryption

    Classical Homomorphic Encryption for Quantum Circuits

    Get PDF
    We present the first leveled fully homomorphic encryption scheme for quantum circuits with classical keys. The scheme allows a classical client to blindly delegate a quantum computation to a quantum server: an honest server is able to run the computation while a malicious server is unable to learn any information about the computation. We show that it is possible to construct such a scheme directly from a quantum secure classical homomorphic encryption scheme with certain properties. Finally, we show that a classical homomorphic encryption scheme with the required properties can be constructed from the learning with errors problem

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    Ring Learning With Errors: A crossroads between postquantum cryptography, machine learning and number theory

    Get PDF
    The present survey reports on the state of the art of the different cryptographic functionalities built upon the ring learning with errors problem and its interplay with several classical problems in algebraic number theory. The survey is based to a certain extent on an invited course given by the author at the Basque Center for Applied Mathematics in September 2018.Comment: arXiv admin note: text overlap with arXiv:1508.01375 by other authors/ comment of the author: quotation has been added to Theorem 5.

    General Impossibility of Group Homomorphic Encryption in the Quantum World

    Get PDF
    Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.Comment: 20 pages, 2 figures, conferenc

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Study of Fully Homomorphic Encryption over Integers

    Get PDF
    Fully homomorphic encryption has long been regarded as an open problem of cryptography. The method of constructing first fully homomorphic encryption scheme by Gentry is complicate so that it has been considered difficult to understand. This paper explains the idea of constructing fully homomorphic encryption and presents a general framework from various scheme of fully homomorphic encryption. Specially, this general framework can show some possible ways to construct fully homomorphic encryption. We then analyze the procedure how to obtaining fully homomorphic encryption over the integers. The analysis of recrypt procedure show the growth of noise, and the bound of noise in recrypt procedure is given. Finally, we describe the steps of implementation.

    Sanitization of FHE ciphertexts

    Get PDF
    By definition, fully homomorphic encryption (FHE) schemes support homomorphic decryption, and all known FHE constructions are bootstrapped from a Somewhat Homomorphic Encryption (SHE) scheme via this technique. Additionally, when a public key is provided, ciphertexts are also re-randomizable, e.g., by adding to them fresh encryptions of 0. From those two operations we devise an algorithm to sanitize a ciphertext, by making its distribution canonical. In particular, the distribution of the ciphertext does not depend on the circuit that led to it via homomorphic evaluation, thus providing circuit privacy in the honest-but-curious model. Unlike the previous approach based on noise flooding, our approach does not degrade much the security/efficiency trade-off of the underlying FHE. The technique can be applied to all lattice-based FHE proposed so far, without substantially affecting their concrete parameters
    corecore