108 research outputs found

    Design and Test Space Exploration of Transport-Triggered Architectures

    Get PDF
    This paper describes a new approach in the high level design and test of transport-triggered architectures (TTA), a special type of application specific instruction processors (ASIP). The proposed method introduces the test as an additional constraint, besides throughput and circuit area. The method, that calculates the testability of the system, helps the designer to assess the obtained architectures with respect to test, area and throughput in the early phase of the design and selects the most suitable one. In order to create the templated TTA, the ÂżMOVEÂż framework has been addressed. The approach is validated with respect to the ÂżCryptÂż Unix applicatio

    VLSI design of high-speed adders for digital signal processing applications.

    Get PDF

    Optimizing construction of scheduled data flow graph for on-line testability

    Get PDF
    The objective of this work is to develop a new methodology for behavioural synthesis using a flow of synthesis, better suited to the scheduling of independent calculations and non-concurrent online testing. The traditional behavioural synthesis process can be defined as the compilation of an algorithmic specification into an architecture composed of a data path and a controller. This stream of synthesis generally involves scheduling, resource allocation, generation of the data path and controller synthesis. Experiments showed that optimization started at the high level synthesis improves the performance of the result, yet the current tools do not offer synthesis optimizations that from the RTL level. This justifies the development of an optimization methodology which takes effect from the behavioural specification and accompanying the synthesis process in its various stages. In this paper we propose the use of algebraic properties (commutativity, associativity and distributivity) to transform readable mathematical formulas of algorithmic specifications into mathematical formulas evaluated efficiently. This will effectively reduce the execution time of scheduling calculations and increase the possibilities of testability

    A Novel VLSI Design On CSKA Of Binary Tree Adder With Compaq Area And High Throughput

    Get PDF
    Addition is one of the most basic operations performed in all computing units, including microprocessors and digital signal processors. It is also a basic unit utilized in various complicated algorithms of multiplication and division. Efficient implementation of an adder circuit usually revolves around reducing the cost to propagate the carry between successive bit positions. Multi-operand adders are important arithmetic design blocks especially in the addition of partial products of hardware multipliers. The multi-operand adders (MOAs) are widely used in the modern low-power and high-speed portable very-large-scale integration systems for image and signal processing applications such as digital filters, transforms, convolution neural network architecture. Hence, a new high-speed and area efficient adder architecture is proposed using pre-compute bitwise addition followed by carry prefix computation logic to perform the three-operand binary addition that consumes substantially less area, low power and drastically reduces the adder delay. Further, this project is enhanced by using Modified carry bypass adder to further reduce more density and latency constraints. Modified carry skip adder introduces simple and low complex carry skip logic to reduce parameters constraints. In this proposal work, designed binary tree adder (BTA) is analyzed to find the possibilities for area minimization. Based on the analysis, critical path of carry is taken into the new logic implementation and the corresponding design of CSKP are proposed for the BTA with AOI, OAI

    High speed modified carry save adder using a structure of multiplexers

    Get PDF
    Adders are the heart of data path circuits for any processor in digital computer and signal processing systems. Growth in technology keeps supporting efficient design of binary adders for high speed applications. In this paper, a fast and area-efficient modified carry save adder (CSA) is presented. A multiplexer based design of full adder is proposed to implement the structure of the CSA. The proposed design of full adder is employed in designing all stages of traditional CSA. By modifying the design of full adder in CSA, the complexity and area of the design can be reduced, resulting in reduced delay time. The VHDL implementations of CSA adders including (the proposed version, traditional CSA, and modified CSAs presented in literature) are simulated using Quartus II synthesis software tool with the altera FPGA EP2C5T144C6 device (Cyclone II). Simulation results of 64-bit adder designs demonstrate the average improvement of 17.75%, 1.60%, and 8.81% respectively for the worst case time, thermal power dissipation and number of FPGA logic elements

    A study of arithmetic circuits and the effect of utilising Reed-Muller techniques

    Get PDF
    Reed-Muller algebraic techniques, as an alternative means in logic design, became more attractive recently, because of their compact representations of logic functions and yielding of easily testable circuits. It is claimed by some researchers that Reed-Muller algebraic techniques are particularly suitable for arithmetic circuits. In fact, no practical application in this field can be found in the open literature.This project investigates existing Reed-Muller algebraic techniques and explores their application in arithmetic circuits. The work described in this thesis is concerned with practical applications in arithmetic circuits, especially for minimizing logic circuits at the transistor level. These results are compared with those obtained using the conventional Boolean algebraic techniques. This work is also related to wider fields, from logic level design to layout level design in CMOS circuits, the current leading technology in VLSI. The emphasis is put on circuit level (transistor level) design. The results show that, although Boolean logic is believed to be a more general tool in logic design, it is not the best tool in all situations. Reed-Muller logic can generate good results which can't be easily obtained by using Boolean logic.F or testing purposes, a gate fault model is often used in the conventional implementation of Reed-Muller logic, which leads to Reed-Muller logic being restricted to using a small gate set. This usually leads to generating more complex circuits. When a cell fault model, which is more suitable for regular and iterative circuits, such as arithmetic circuits, is used instead of the gate fault model in Reed-Muller logic, a wider gate set can be employed to realize Reed-Muller functions. As a result, many circuits designed using Reed-Muller logic can be comparable to that designed using Boolean logic. This conclusion is demonstrated by testing many randomly generated functions.The main aim of this project is to develop arithmetic circuits for practical application. A number of practical arithmetic circuits are reported. The first one is a carry chain adder. Utilising the CMOS circuit characteristics, a simple and high speed carry chain is constructed to perform the carry operation. The proposed carry chain adder can be reconstructed to form a fast carry skip adder, and it is also found to be a good application for residue number adders. An algorithm for an on-line adder and its implementation are also developed. Another circuit is a parallel multiplier based on 5:3 counter. The simulations show that the proposed circuits are better than many previous designs, in terms of the number of transistors and speed. In addition, a 4:2 compressor for a carry free adder is investigated. It is shown that the two main schemes to construct the 4:2 compressor have a unified structure. A variant of the Baugh and Wooley algorithm is also studied and generalized in this work

    A Survey on the Best Choice for Modulus of Residue Code

    Get PDF
    Nowadays, the development of technology and the growing need for dense and complex chips have led chip industries to increase their attention on the circuit testability. Also, using the electronic chips in certain industries, such as the space industry, makes the design of fault tolerant circuits a challenging issue. Coding is one of the most suitable methods for error detection and correction. The residue code, as one of the best choices for error detection aims, is wildly used in large arithmetic circuits such as multiplier and also finds a wide range of applications in processors and digital filters. The modulus value in this technique directly effect on the area overhead parameter. A large area overhead is one of the most important disadvantages especially for testing the small circuits. The purpose of this paper is to study and investigate the best choice for residue code check base that is used for simple and small circuits such as a simple ripple carry adder. The performances are evaluated by applying stuck-at-faults and transition-faults by simulators. The efficiency is defined based on fault coverage and normalized area overhead. The results show that the modulus 3 with 95% efficiency provided the best result. Residue code with this modulus for checking a ripple carry adder, in comparison with duplex circuit, 30% improves the efficiency
    • …
    corecore