36,268 research outputs found

    Optimization Methods for Inverse Problems

    Full text link
    Optimization plays an important role in solving many inverse problems. Indeed, the task of inversion often either involves or is fully cast as a solution of an optimization problem. In this light, the mere non-linear, non-convex, and large-scale nature of many of these inversions gives rise to some very challenging optimization problems. The inverse problem community has long been developing various techniques for solving such optimization tasks. However, other, seemingly disjoint communities, such as that of machine learning, have developed, almost in parallel, interesting alternative methods which might have stayed under the radar of the inverse problem community. In this survey, we aim to change that. In doing so, we first discuss current state-of-the-art optimization methods widely used in inverse problems. We then survey recent related advances in addressing similar challenges in problems faced by the machine learning community, and discuss their potential advantages for solving inverse problems. By highlighting the similarities among the optimization challenges faced by the inverse problem and the machine learning communities, we hope that this survey can serve as a bridge in bringing together these two communities and encourage cross fertilization of ideas.Comment: 13 page

    Policy Gradients for CVaR-Constrained MDPs

    Full text link
    We study a risk-constrained version of the stochastic shortest path (SSP) problem, where the risk measure considered is Conditional Value-at-Risk (CVaR). We propose two algorithms that obtain a locally risk-optimal policy by employing four tools: stochastic approximation, mini batches, policy gradients and importance sampling. Both the algorithms incorporate a CVaR estimation procedure, along the lines of Bardou et al. [2009], which in turn is based on Rockafellar-Uryasev's representation for CVaR and utilize the likelihood ratio principle for estimating the gradient of the sum of one cost function (objective of the SSP) and the gradient of the CVaR of the sum of another cost function (in the constraint of SSP). The algorithms differ in the manner in which they approximate the CVaR estimates/necessary gradients - the first algorithm uses stochastic approximation, while the second employ mini-batches in the spirit of Monte Carlo methods. We establish asymptotic convergence of both the algorithms. Further, since estimating CVaR is related to rare-event simulation, we incorporate an importance sampling based variance reduction scheme into our proposed algorithms

    Relative Entropy Relaxations for Signomial Optimization

    Full text link
    Signomial programs (SPs) are optimization problems specified in terms of signomials, which are weighted sums of exponentials composed with linear functionals of a decision variable. SPs are non-convex optimization problems in general, and families of NP-hard problems can be reduced to SPs. In this paper we describe a hierarchy of convex relaxations to obtain successively tighter lower bounds of the optimal value of SPs. This sequence of lower bounds is computed by solving increasingly larger-sized relative entropy optimization problems, which are convex programs specified in terms of linear and relative entropy functions. Our approach relies crucially on the observation that the relative entropy function -- by virtue of its joint convexity with respect to both arguments -- provides a convex parametrization of certain sets of globally nonnegative signomials with efficiently computable nonnegativity certificates via the arithmetic-geometric-mean inequality. By appealing to representation theorems from real algebraic geometry, we show that our sequences of lower bounds converge to the global optima for broad classes of SPs. Finally, we also demonstrate the effectiveness of our methods via numerical experiments
    • …
    corecore