2,222 research outputs found

    Semantic Context Forests for Learning-Based Knee Cartilage Segmentation in 3D MR Images

    Full text link
    The automatic segmentation of human knee cartilage from 3D MR images is a useful yet challenging task due to the thin sheet structure of the cartilage with diffuse boundaries and inhomogeneous intensities. In this paper, we present an iterative multi-class learning method to segment the femoral, tibial and patellar cartilage simultaneously, which effectively exploits the spatial contextual constraints between bone and cartilage, and also between different cartilages. First, based on the fact that the cartilage grows in only certain area of the corresponding bone surface, we extract the distance features of not only to the surface of the bone, but more informatively, to the densely registered anatomical landmarks on the bone surface. Second, we introduce a set of iterative discriminative classifiers that at each iteration, probability comparison features are constructed from the class confidence maps derived by previously learned classifiers. These features automatically embed the semantic context information between different cartilages of interest. Validated on a total of 176 volumes from the Osteoarthritis Initiative (OAI) dataset, the proposed approach demonstrates high robustness and accuracy of segmentation in comparison with existing state-of-the-art MR cartilage segmentation methods.Comment: MICCAI 2013: Workshop on Medical Computer Visio

    Analysis, Segmentation and Prediction of Knee Cartilage using Statistical Shape Models

    Get PDF
    Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from magnetic resonance imaging (MRI) and estimation algorithms from computer tomography (CT) or x-rays are proposed to facilitate the efficient development and accurate analysis of future treatments related to the knee. Cartilage morphology results suggest distinct patterns of wear in varus, valgus, and neutral degenerative knees, and examination of contact regions during the deep knee bend activity further emphasizes these patterns. Segmentation results were achieved that were comparable if not of higher quality than existing state-of-the-art techniques for both femoral and tibial cartilage. Likewise, using the point correspondence properties of SSMs, estimation of articulating cartilage was effective in healthy and degenerative knees. In conclusion, this work provides novel, clinically relevant morphological data to compute segmentation and estimate new data in such a way to potentially contribute to improving results and efficiency in evaluation of the femorotibial cartilage layer

    Applying machine learning methods to enable automatic customisation of knee replacement implants from CT data

    Get PDF
    The aim of this study was to develop an automated pipeline capable of designing custom total knee replacement implants from CT scans. The developed pipeline firstly utilised a series of machine learning methods including classification, object detection, and image segmentation models, to extract geometrical information from inputted DICOM files. Statistical shape models then used the information to create femur and tibia 3D surface model predictions which were ultimately used by computer aided design scripts to generate customised implant designs. The developed pipeline was trained and tested using CT scan images, along with segmented 3D models, obtained for 98 Korean Asian subjects. The performance of the pipeline was tested computationally by virtually fitting outputted implant designs with ā€˜ground truthā€™ 3D models for each test subjectā€™s bones. This demonstrated the pipeline was capable of repeatably producing highly accurate designs, and its performance was not impacted by subject sex, height, age, or knee side. In conclusion, a robust, accurate and automatic, CT-based total knee replacement customisation pipeline was shown to be feasible and could afford significant time and cost advantages over conventional methods. The pipeline framework could also be adapted to enable customisation of other medical implants

    Reconstruction of Patient-Specific Bone Models from X-Ray Radiography

    Get PDF
    The availability of a patientā€specific bone model has become an increasingly invaluable addition to orthopedic case evaluation and planning [1]. Utilized within a wide range of specialized visualization and analysis tools, such models provide unprecedented wealth of bone shape information previously unattainable using traditional radiographic imaging [2]. In this work, a novel bone reconstruction method from two or more xā€ray images is described. This method is superior to previous attempts in terms of accuracy and repeatability. The new technique accurately models the radiological scene in a way that eliminates the need for expensive multiā€planar radiographic imaging systems. It is also flexible enough to allow for both short and long film imaging using standard radiological protocols, which makes the technology easily utilized in standard clinical setups

    Applied AI/ML for automatic customisation of medical implants

    Get PDF
    Most knee replacement surgeries are performed using ā€˜off-the-shelfā€™ implants, supplied with a set number of standardised sizes. X-rays are taken during pre-operative assessment and used by clinicians to estimate the best options for patients. Manual templating and implant size selection have, however, been shown to be inaccurate, and frequently the generically shaped products do not adequately fit patientsā€™ unique anatomies. Furthermore, off-the-shelf implants are typically made from solid metal and do not exhibit mechanical properties like the native bone. Consequently, the combination of these factors often leads to poor outcomes for patients. Various solutions have been outlined in the literature for customising the size, shape, and stiffness of implants for the specific needs of individuals. Such designs can be fabricated via additive manufacturing which enables bespoke and intricate geometries to be produced in biocompatible materials. Despite this, all customisation solutions identified required some level of manual input to segment image files, identify anatomical features, and/or drive design software. These tasks are time consuming, expensive, and require trained resource. Almost all currently available solutions also require CT imaging, which adds further expense, incurs high levels of potentially harmful radiation, and is not as commonly accessible as X-ray imaging. This thesis explores how various levels of knee replacement customisation can be completed automatically by applying artificial intelligence, machine learning and statistical methods. The principal output is a software application, believed to be the first true ā€˜mass-customisationā€™ solution. The software is compatible with both 2D X-ray and 3D CT data and enables fully automatic and accurate implant size prediction, shape customisation and stiffness matching. It is therefore seen to address the key limitations associated with current implant customisation solutions and will hopefully enable the benefits of customisation to be more widely accessible.Open Acces

    ADDRESSING PARTIAL VOLUME ARTIFACTS WITH QUANTITATIVE COMPUTED TOMOGRAPHY-BASED FINITE ELEMENT MODELING OF THE HUMAN PROXIMAL TIBIA

    Get PDF
    Quantitative computed tomography (QCT) based finite element modeling (FE) has potential to clarify the role of subchondral bone stiffness in osteoarthritis. The limited spatial resolution of clinical CT systems, however, results in partial volume (PV) artifacts and low contrast between the cortical and trabecular bone, which adversely affect the accuracy of QCT-FE models. Using different cortical modeling and partial volume correction algorithms, the overall aim of this research was to improve the accuracy of QCT-FE predictions of stiffness at the proximal tibial subchondral surface. For Study #1, QCT-FE models of the human proximal tibia were developed by (1) separate modeling of cortical and trabecular bone (SM), and (2) continuum models (CM). QCT-FE models with SM and CM explained 76%-81% of the experimental stiffness variance with error ranging between 11.2% and 20.2%. SM did not offer any improvement relative to CM. The segmented cortical region indicated densities below the range reported for cortical bone, suggesting that cortical voxels were corrupted by PV artifacts. For Study #2, we corrected PV layers at the cortical bone using four different methods including: (1) Image Deblurring of all of the proximal tibia (IDA); (2) Image Deblurring of the cortical region (IDC); (3) Image Remapping (IR); and (4) Voxel Exclusion (VE). IDA resulted in low predictive accuracy with R2=50% and error of 76.4%. IDC explained 70% of the measured stiffness variance with 23.3% error. The IR approach resulted in an R2 of 81% with 10.6% error. VE resulted in the highest predictive accuracy with R2=84%, and 9.8% error. For Study #3, we investigated whether PV effects could be addressed by mapping boneā€™s elastic modulus (E) to mesh Gaussian points. Corresponding FE models using the Gauss-point method converged with larger elements when compared to the conventional method which assigned a single elastic modulus to each element (constant-E). The error at the converged mesh was similar for constant-E and Gauss-point; though, the Gauss-point method indicated this error with larger elements and less computation time (30 min vs 180 min). This research indicated that separate modeling of cortical and trabecular bone did not improve predictions of stiffness at the subchondral surface. However, this research did indicate that PV correction has potential to improve QCT-FE models of subchondral bone. These models may help to clarify the role of subchondral bone stiffness in knee OA pathogenesis with living people

    Three Dimensional Nonlinear Statistical Modeling Framework for Morphological Analysis

    Get PDF
    This dissertation describes a novel three-dimensional (3D) morphometric analysis framework for building statistical shape models and identifying shape differences between populations. This research generalizes the use of anatomical atlases on more complex anatomy as in case of irregular, flat bones, and bones with deformity and irregular bone growth. The foundations for this framework are: 1) Anatomical atlases which allow the creation of homologues anatomical models across populations; 2) Statistical representation for output models in a compact form to capture both local and global shape variation across populations; 3) Shape Analysis using automated 3D landmarking and surface matching. The proposed framework has various applications in clinical, forensic and physical anthropology fields. Extensive research has been published in peer-reviewed image processing, forensic anthropology, physical anthropology, biomedical engineering, and clinical orthopedics conferences and journals. The forthcoming discussion of existing methods for morphometric analysis, including manual and semi-automatic methods, addresses the need for automation of morphometric analysis and statistical atlases. Explanations of these existing methods for the construction of statistical shape models, including benefits and limitations of each method, provide evidence of the necessity for such a novel algorithm. A novel approach was taken to achieve accurate point correspondence in case of irregular and deformed anatomy. This was achieved using a scale space approach to detect prominent scale invariant features. These features were then matched and registered using a novel multi-scale method, utilizing both coordinate data as well as shape descriptors, followed by an overall surface deformation using a new constrained free-form deformation. Applications of output statistical atlases are discussed, including forensic applications for the skull sexing, as well as physical anthropology applications, such as asymmetry in clavicles. Clinical applications in pelvis reconstruction and studying of lumbar kinematics and studying thickness of bone and soft tissue are also discussed
    • ā€¦
    corecore