171 research outputs found

    Hierarchical Segmentation of Polarimetric SAR Images Using Heterogeneous Clutter Models

    Get PDF
    International audienceIn this paper, heterogeneous clutter models are used to describe polarimetric synthetic aperture radar (PolSAR) data. The KummerU distribution is introduced to model the PolSAR clutter. Then, a detailed analysis is carried out to evaluate the potential of this new multivariate distribution. It is implemented in a hierarchical maximum likelihood segmentation algorithm. The segmentation results are shown on both synthetic and high-resolution PolSAR data at the X- and L-bands. Finally, some methods are examined to determine automatically the "optimal" number of segments in the final partition

    Statistical Modeling of SAR Images: A Survey

    Get PDF
    Statistical modeling is essential to SAR (Synthetic Aperture Radar) image interpretation. It aims to describe SAR images through statistical methods and reveal the characteristics of these images. Moreover, statistical modeling can provide a technical support for a comprehensive understanding of terrain scattering mechanism, which helps to develop algorithms for effective image interpretation and creditable image simulation. Numerous statistical models have been developed to describe SAR image data, and the purpose of this paper is to categorize and evaluate these models. We first summarize the development history and the current researching state of statistical modeling, then different SAR image models developed from the product model are mainly discussed in detail. Relevant issues are also discussed. Several promising directions for future research are concluded at last

    Polarimetric SAR Image Segmentation with B-Splines and a New Statistical Model

    Full text link
    We present an approach for polarimetric Synthetic Aperture Radar (SAR) image region boundary detection based on the use of B-Spline active contours and a new model for polarimetric SAR data: the GHP distribution. In order to detect the boundary of a region, initial B-Spline curves are specified, either automatically or manually, and the proposed algorithm uses a deformable contours technique to find the boundary. In doing this, the parameters of the polarimetric GHP model for the data are estimated, in order to find the transition points between the region being segmented and the surrounding area. This is a local algorithm since it works only on the region to be segmented. Results of its performance are presented

    CFAR Hierarchical Clustering of Polarimetric SAR Data

    Get PDF
    International audienceRecently, a general approach for high-resolution polarimetric SAR (POLSAR) data classification in heterogeneous clutter was presented, based on a statistical test of equality of covariance matrices. Here, we extend that approach by taking advantage of the Constant False Alarm Ratio (CFAR) property of the statistical test in order to improve the clustering process. We show that the CFAR property can be used in the hierarchical segmentation of the POLSAR data images to automatically detect the number of clusters. The proposed method will be applied on a high-resolution polarimetric data set acquired by the ONERA RAMSES system

    Statistical comparison of SAR backscatter from icebergs embedded in sea ice and in open water using RADARSAT-2 images of in Newfoundland waters and the Davis Strait

    Get PDF
    Icebergs are considered a threat to marine operations. Satellite monitoring of icebergs is one option to aid in the development of iceberg hazard maps. Satellite synthetic aperture radar (SAR) is an obvious choice because of its relative weather independence, day and night operation. Nonetheless, the detection of icebergs in SAR can be a challenge, particularly with high iceberg areal density, heterogeneous background clutter and the presence of sea ice. This thesis investigates and compares polarimetric signatures of icebergs embedded in sea ice and icebergs in open water. In this thesis, RADARSAT-2 images have been used for analysis, which was acquired over locations near the coastline (approximately 3-35 km) of the islands of Newfoundland and Greenland. All icebergs considered here are in the lower incident angle range (below 30 degrees) of the SAR acquisition geometry. For analysis, polarimetry parameters such as co- (HH) and cross- (HV) polarization and several decomposition techniques, specifically Pauli, Freeman-Durden, Yamaguchi, Cloud-Pottier and van Zyl classification, have been used to determine the polarimetric signatures of icebergs and sea ice. Statistical hypothesis tests were used to determine the differences among backscatters from different icebergs. Statistical results tend to show a dominant surface scattering mechanism for icebergs. Moreover, icebergs in open water produce larger volume scatter than icebergs in sea ice, while icebergs in sea ice produce larger surface scatter than icebergs in open water. In addition, there appear to be minor observable differences between icebergs in Greenland and icebergs in Newfoundland

    Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar

    Get PDF
    Constant false alarm rate (CFAR) algorithms using a local training window are widely used for ship detection with synthetic aperture radar (SAR) imagery. However, when the density of the targets is high, such as in busy shipping lines and crowded harbors, the background statistics may be contaminated by the presence of nearby targets in the training window. Recently, a robust CFAR detector based on truncated statistics (TS) was proposed. However, the truncation of data in the format of polarimetric covariance matrices is much more complicated with respect to the truncation of intensity (single polarization) data. In this article, a polarimetric whitening filter TS CFAR (PWF-TS-CFAR) is proposed to estimate the background parameters accurately in the contaminated sea clutter for PolSAR imagery. The CFAR detector uses a polarimetric whitening filter (PWF) to turn the multidimensional problem to a 1-D case. It uses truncation to exclude possible statistically interfering outliers and uses TS to model the remaining background samples. The algorithm does not require prior knowledge of the interfering targets, and it is performed iteratively and adaptively to derive better estimates of the polarimetric covariance matrix (although this is computationally expensive). The PWF-TS-CFAR detector provides accurate background clutter modeling, a stable false alarm property, and improves the detection performance in high-target-density situations. RadarSat2 data are used to verify our derivations, and the results are in line with the theory

    Using Quad‐Pol and Single‐Pol RADARSAT‐2 Data for Monitoring Cold Alpine and Outlet Antarctic Glaciers

    Get PDF
    International audienceThis paper presents some applications of the Maximum Likelihood (ML) texture tracking on displacement estimation of some alpine and antarctic glaciers surfaces. This method is adapted to the statistical characteristic of the new High Resolution (HR) Polarimetric SAR (Pol- SAR) data. The ML texture tracking method is firstly reminded and a statistical model of HR PolSAR data is explained. The main part of this paper is focused on the application of this method on glaciers monitoring. Three different glaciers have been chosen to test the algorithm: a cold alpine glacier, a temperate alpine glacier and an outlet antarctic glacier. The accuracy and limits of the method are highlighted in each case and results application is discussed
    • 

    corecore