9,679 research outputs found

    GETNET: A General End-to-end Two-dimensional CNN Framework for Hyperspectral Image Change Detection

    Full text link
    Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with the highspectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high dimension problem and explore abundance information, this paper presents a General End-to-end Two-dimensional CNN (GETNET) framework for hyperspectral image change detection (HSI-CD). The main contributions of this work are threefold: 1) Mixed-affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multi-source information; 2) 2-D CNN is designed to learn the discriminative features effectively from multi-source data at a higher level and enhance the generalization ability of the proposed CD algorithm; 3) A new HSI-CD data set is designed for the objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate the proposed method outperforms most of the state-of-the-arts

    Further results on dissimilarity spaces for hyperspectral images RF-CBIR

    Full text link
    Content-Based Image Retrieval (CBIR) systems are powerful search tools in image databases that have been little applied to hyperspectral images. Relevance feedback (RF) is an iterative process that uses machine learning techniques and user's feedback to improve the CBIR systems performance. We pursued to expand previous research in hyperspectral CBIR systems built on dissimilarity functions defined either on spectral and spatial features extracted by spectral unmixing techniques, or on dictionaries extracted by dictionary-based compressors. These dissimilarity functions were not suitable for direct application in common machine learning techniques. We propose to use a RF general approach based on dissimilarity spaces which is more appropriate for the application of machine learning algorithms to the hyperspectral RF-CBIR. We validate the proposed RF method for hyperspectral CBIR systems over a real hyperspectral dataset.Comment: In Pattern Recognition Letters (2013

    Fuzzy spectral and spatial feature integration for classification of nonferrous materials in hyperspectral data

    Get PDF
    Hyperspectral data allows the construction of more elaborate models to sample the properties of the nonferrous materials than the standard RGB color representation. In this paper, the nonferrous waste materials are studied as they cannot be sorted by classical procedures due to their color, weight and shape similarities. The experimental results presented in this paper reveal that factors such as the various levels of oxidization of the waste materials and the slight differences in their chemical composition preclude the use of the spectral features in a simplistic manner for robust material classification. To address these problems, the proposed FUSSER (fuzzy spectral and spatial classifier) algorithm detailed in this paper merges the spectral and spatial features to obtain a combined feature vector that is able to better sample the properties of the nonferrous materials than the single pixel spectral features when applied to the construction of multivariate Gaussian distributions. This approach allows the implementation of statistical region merging techniques in order to increase the performance of the classification process. To achieve an efficient implementation, the dimensionality of the hyperspectral data is reduced by constructing bio-inspired spectral fuzzy sets that minimize the amount of redundant information contained in adjacent hyperspectral bands. The experimental results indicate that the proposed algorithm increased the overall classification rate from 44% using RGB data up to 98% when the spectral-spatial features are used for nonferrous material classification
    corecore