92,792 research outputs found

    Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome).

    Get PDF
    We report an allelic series of eight mutations in GATA2 underlying Emberger syndrome, an autosomal dominant primary lymphedema associated with a predisposition to acute myeloid leukemia. GATA2 is a transcription factor that plays an essential role in gene regulation during vascular development and hematopoietic differentiation. Our findings indicate that haploinsufficiency of GATA2 underlies primary lymphedema and predisposes to acute myeloid leukemia in this syndrome

    Blocking the APRIL circuit enhances acute myeloid leukemia cell chemosensitivity.

    Get PDF
    Resistance to chemotherapy-induced cell death represents a major obstacle in the treatment of acute myeloid leukemia. APRIL (A Proliferation Inducing Ligand) is a member of the tumor necrosis factor superfamily that plays a key role in normal B-cell development, while promoting survival and proliferation of malignant B cells. We investigated APRIL expression and activity in acute myeloid leukemia. We found that APRIL mRNA and protein, including the secreted form, are expressed in leukemic cells of patients with M0, M2 and M4 acute myeloid leukemia subtypes but not in normal hematopoietic progenitors. Retrovirus-mediated APRIL expression in normal hematopoietic progenitors confers resistance to chemotherapeutic drugs-induced apoptosis. Conversely, blocking APRIL function by recombinant soluble APRIL receptors increased chemotherapeutic drugs-induced cell adeath in acute myeloid leukemia cells. These results indicate that APRIL acts in an autocrine fashion to protect acute myeloid leukemia cells from drug-induced death and foresee a therapeutic potential of APRIL antagonists in the treatment of acute myeloid leukemia

    Acute myelogenous leukemia switch lineage upon relapse to acute lymphoblastic leukemia: a case report

    Get PDF
    Acute leukemia, the most common form of cancer in children, accounts for approximately 30% of all childhood malignancies, with acute lymphoblastic leukemia being five times more frequent than acute myeloid leukemia. Lineage switch is the term that has been used to describe the phenomenon of acute leukemias that meet the standard French-American-British system criteria for a particular lineage (either lymphoid or myeloid) upon initial diagnosis, but meet the criteria for the opposite lineage at relapse. Many reports have documented conversions of acute lymphoblastic leukemia to acute myeloid leukemia

    A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1)

    Get PDF
    Acute myeloid leukemia with mutated NPM1 gene and aberrant cytoplasmic expression of nucleophosmin (NPMc+acute myeloid leukemia) shows distinctive biological and clinical features. Experimental evidence of the oncogenic potential of the nucleophosmin mutant is, however, still lacking, and it is unclear whether other genetic lesion(s), e.g. FLT3 internal tandem duplication, cooperate with NPM1 mutations in acute myeloid leukemia development. An analysis of age-specific incidence, together with mathematical modeling of acute myeloid leukemia epidemiology, can help to uncover the number of genetic events needed to cause leukemia. We collected data on age at diagnosis of acute myeloid leukemia patients from five European Centers in Germany, The Netherlands and Italy, and determined the age-specific incidence of AML with mutated NPM1 (a total of 1,444 cases) for each country. Linear regression of the curves representing age-specific rates of diagnosis per year showed similar slopes of about 4 on a double logarithmic scale. We then adapted a previously designed mathematical model of hematopoietic tumorigenesis to analyze the age incidence of acute myeloid leukemia with mutated NPM1 and found that a one-mutation model can explain the incidence curve of this leukemia entity. This model fits with the hypothesis that NPMc+acute myeloid leukemia arises from an NPM1 mutation with haploinsufficiency of the wild-type NPM1 allele

    A one-mutation mathematical model can explain the age incidence of acute myeloid leukemia with mutated nucleophosmin (NPM1).

    Get PDF
    Acute myeloid leukemia with mutated NPM1 gene and aberrant cytoplasmic expression of nucleophosmin (NPMc(+) acute myeloid leukemia) shows distinctive biological and clinical features. Experimental evidence of the oncogenic potential of the nucleophosmin mutant is, however, still lacking, and it is unclear whether other genetic lesion(s), e.g. FLT3 internal tandem duplication, cooperate with NPM1 mutations in acute myeloid leukemia development. An analysis of age-specific incidence, together with mathematical modeling of acute myeloid leukemia epidemiology, can help to uncover the number of genetic events needed to cause leukemia. We collected data on age at diagnosis of acute myeloid leukemia patients from five European Centers in Germany, The Netherlands and Italy, and determined the age-specific incidence of AML with mutated NPM1 (a total of 1,444 cases) for each country. Linear regression of the curves representing age-specific rates of diagnosis per year showed similar slopes of about 4 on a double logarithmic scale. We then adapted a previously designed mathematical model of hematopoietic tumorigenesis to analyze the age incidence of acute myeloid leukemia with mutated NPM1 and found that a one-mutation model can explain the incidence curve of this leukemia entity. This model fits with the hypothesis that NPMc(+) acute myeloid leukemia arises from an NPM1 mutation with haploinsufficiency of the wild-type NPM1 allele

    Questions and answers about leukemia

    Get PDF
    Leukemia is cancer of the white blood cells. It develops in the bone marrow and spreads into the blood and to other organs. There are several types of leukemia. They are grouped in two ways: by how rapidly the disease develops (acute vs. chronic leukemia) and by the type of blood cell involved (lymphocytic and myeloid leukemia being the most common). In acute leukemia, bone marrow cells are immature and are unable to function normally. The number of abnormal cells increases rapidly. In chronic leukemia, cells are more mature and can carry out some of their normal functions. The number of abnormal cells increases more slowly. The most common types of leukemia are acute lymphocytic leukemia, acute myeloid leukemia, chronic lymphocytic leukemia, and chronic myeloid leukemia. In children leukemia is the most common cancer, and acute lymphocytic leukemia is the most common type of leukemia. In adults, acute myeloid leukemia is the most common occurring type, followed by chronic lymphocytic leukemia.Publication date from document properties.mleukemi.pd

    Acute Myeloid Leukemia

    Get PDF
    Acute myeloid leukemia (AML) is the most common type of leukemia. The Cancer Genome Atlas Research Network has demonstrated the increasing genomic complexity of acute myeloid leukemia (AML). In addition, the network has facilitated our understanding of the molecular events leading to this deadly form of malignancy for which the prognosis has not improved over past decades. AML is a highly heterogeneous disease, and cytogenetics and molecular analysis of the various chromosome aberrations including deletions, duplications, aneuploidy, balanced reciprocal translocations and fusion of transcription factor genes and tyrosine kinases has led to better understanding and identification of subgroups of AML with different prognoses. Furthermore, molecular classification based on mRNA expression profiling has facilitated identification of novel subclasses and defined high-, poor-risk AML based on specific molecular signatures. However, despite increased understanding of AML genetics, the outcome for AML patients whose number is likely to rise as the population ages, has not changed significantly. Until it does, further investigation of the genomic complexity of the disease and advances in drug development are needed. In this review, leading AML clinicians and research investigators provide an up-to-date understanding of the molecular biology of the disease addressing advances in diagnosis, classification, prognostication and therapeutic strategies that may have significant promise and impact on overall patient survival

    Clinical benefit of glasdegib plus low-dose cytarabine in patients with de novo and secondary acute myeloid leukemia: long-term analysis of a phase II randomized trial

    Get PDF
    This analysis from the phase II BRIGHT AML 1003 trial reports the long-term efficacy and safety of glasdegib + low-dose cytarabine (LDAC) in patients with acute myeloid leukemia ineligible for intensive chemotherapy. The multicenter, open-label study randomized (2:1) patients to receive glasdegib + LDAC (de novo, n = 38; secondary acute myeloid leukemia, n = 40) or LDAC alone (de novo, n = 18; secondary acute myeloid leukemia, n = 20). At the time of analysis, 90% of patients had died, with the longest follow-up since randomization 36 months. The combination of glasdegib and LDAC conferred superior overall survival (OS) versus LDAC alone; hazard ratio (HR) 0.495; (95% confidence interval [CI] 0.325–0.752); p = 0.0004; median OS was 8.3 versus 4.3 months. Improvement in OS was consistent across cytogenetic risk groups. In a post-hoc subgroup analysis, a survival trend with glasdegib + LDAC was observed in patients with de novo acute myeloid leukemia (HR 0.720; 95% CI 0.395– 1.312; p = 0.14; median OS 6.6 vs 4.3 months) and secondary acute myeloid leukemia (HR 0.287; 95% CI 0.151–0.548; p < 0.0001; median OS 9.1 vs 4.1 months). The incidence of adverse events in the glasdegib + LDAC arm decreased after 90 days’ therapy: 83.7% versus 98.7% during the first 90 days. Glasdegib + LDAC versus LDAC alone continued to demonstrate superior OS in patients with acute myeloid leukemia; the clinical benefit with glasdegib + LDAC was particularly prominent in patients with secondary acute myeloid leukemia. ClinicalTrials.gov identifier: NCT01546038

    The co-presence of deletion 7q, 20q and inversion 16 in therapy-related acute myeloid leukemia developed secondary to treatment of breast cancer with cyclophosphamide, doxorubicin, and radiotherapy: a case report

    Get PDF
    Introduction. Therapy-related acute myeloid leukemia occurs as a complication of treatment with chemotherapy, radiotherapy, immunosuppressive agents or exposure to environmental carcinogens. Case presentation. We report a case of therapy-related acute myeloid leukemia in a 37-year-old Turkish woman in complete remission from breast cancer. Our patient presented to our facility with fatigue, fever, sore throat, peripheral lymphadenopathy, and moderate hepatosplenomegaly. On peripheral blood and bone marrow aspirate smears, monoblasts were present. Immunophenotypic analysis of the bone marrow showed expression of CD11b, CD13, CD14, CD15, CD33, CD34, CD45 and human leukocyte antigen-DR, findings compatible with the diagnosis of acute monoblastic leukemia (French-American-British classification M5a). Therapy-related acute myeloid leukemia developed three years after adjuvant chemotherapy consisting of an alkylating agent, cyclophosphamide and DNA topoisomerase II inhibitor, doxorubicin and adjuvant radiotherapy. Cytogenetic analysis revealed a 46, XX, deletion 7 (q22q34), deletion 20 (q11.2q13.1) karyotype in five out of 20 metaphases and inversion 16 was detected by fluorescence in situ hybridization. There was no response to chemotherapy (cytarabine and idarubicin, FLAG-IDA protocol, azacitidine) and our patient died in the 11th month after diagnosis. Conclusions: The median survival in therapy-related acute myeloid leukemia is shorter compared to de novo acute myeloid leukemia. Also, the response to therapy is poor. In therapy-related acute myeloid leukemia, complex karyotypes have been associated with abnormalities of chromosome 5, rather than 7. To the best of our knowledge, this is the first case of therapy-related acute myeloid leukemia showing the co-presence of deletion 7q, 20q and the inversion 16 signal. © 2012 Yonal et al; licensee BioMed Central Ltd

    Hypocellular acute myeloid leukemia with bone marrow necrosis in young patients: two case reports

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Hypocellular variants of acute myeloid leukemia are very rare and almost always occur in old aged patients. In contrast, hypocellular acute lymphoblastic leukemia usually occurs in children.</p> <p>Case presentation</p> <p>We report two Indian patients with hypocellular acute myeloid leukemia, a 32-year-old woman and a 13-year-old boy. Interestingly, one of the patients also showed bone marrow necrosis.</p> <p>Conclusion</p> <p>Hypocellular acute myeloid leukemia is a rare entity and can affect young individuals. It can be considered as a rare cause of bone marrow necrosis.</p
    • 

    corecore