81 research outputs found

    New optimization models for empty container management

    Get PDF
    This thesis investigates the reasons why nowadays empty container repositioning represents a crucial issue for the shipping industry. Moreover, taking into account information collected through surveys and meetings with industrial experts, we provide a broad overview of current logistic practices for the management of empty containers in the context of international trade. We develop new optimization models in order to support shipping companies in dealing with empty container repositioning. We determine optimal repositioning plans within the time limits imposed by planning operations. Some optimization models have been tested on real data problems provided by a shipping company. These results show that it is possible to achieve significant savings in costs and times requested to determine repositioning plan

    The robust network loading problem under hose demand uncertainty: Formulation, polyhedral analysis, and computations

    Get PDF
    We consider the network loading problem (NLP) under a polyhedral uncertainty description of traffic demands. After giving a compact multicommodity flow formulation of the problem, we state a decomposition property obtained from projecting out the flow variables. This property considerably simplifies the resulting polyhedral analysis and computations by doing away with metric inequalities. Then we focus on a specific choice of the uncertainty description, called the "hose model," which specifies aggregate traffic upper bounds for selected endpoints of the network. We study the polyhedral aspects of the NLP under hose demand uncertainty and use the results as the basis of an efficient branch-and-cut algorithm. The results of extensive computational experiments on well-known network design instances are reported. © 2011 INFORMS

    Optimization of transportation requirements in the deployment of military units

    Get PDF
    Cataloged from PDF version of article.We study the deployment planning problem (DPP) that may roughly be defined as the problem of the planning of the physical movement of military units, stationed at geographically dispersed locations, from their home bases to their designated destinations while obeying constraints on scheduling and routing issues as well as on the availability and use of various types of transportation assets that operate on a multimodal transportation network. The DPP is a large-scale real-world problem for which no analytical models are existent. In this study, we define the problem in detail and analyze it with respect to the academic literature. We propose three mixed integer programming models with the objectives of cost, lateness (the difference between the arrival time of a unit and its earliest allowable arrival time at its destination), and tardiness (the difference between the arrival time of a unit and its latest arrival time at its destination) minimization to solve the problem. The cost-minimization model minimizes total transportation cost of a deployment and is of use for investment decisions in transportation resources during peacetime and for deployment planning in cases where the operation is not imminent and there is enough time to do deliberate planning that takes costs into account. The lateness and tardiness minimization models are of min-max type and are of use when quick deployment is of utmost concern. The lateness minimization model is for cases when the given fleet of transportation assets is sufficient to deploy units within their allowable time windows and the tardiness minimization model is for cases when the given fleet is not sufficient. We propose a solution methodology for solving all three models. The solution methodology involves an effective use of relaxation and restriction that significantly speeds up a CPLEX-based branchand-bound. The solution times for intermediate sized problems are around one hour at maximum for cost and lateness minimization models and around two hours for the tardiness minimization model. Producing a suboptimal feasible solution based on trial and error methods for a problem of the same size takes about a week in the current practice in the Turkish Armed Forces. We also propose a heuristic that is essentially based on solving the models incrementally rather than at one step. Computational results show that the heuristic can be used to find good feasible solutions for the models. We conclude the study with comments on how to use the models in the realworld.Akgün, İbrahimPh.D

    Air Express Network Design with Hub Sorting

    Get PDF
    This dissertation examines an innovative strategic operation for next day air package delivery. The proposed system, in which some packages are sorted twice at two distinct hubs before arriving at their destinations, is investigated for its potential savings. A two-stage sorting operation is proposed and compared to the currently operated single-stage sorting operation. By considering the endogenous optimization of hub sorting and storage capacities, cost minimization models are developed for both operations and used for performance comparison. Two solution approaches are presented in this study, namely the Column Generation (CG) approach and the Genetic Algorithm (GA) approach. The first method is implemented to optimize the problem by means of linear programming (LP) relaxation, in which the resulting model is then embedded into a branch-and-bound approach to generate an integer solution. However, for solving realistic problem sizes, the model is intractable with the conventional time-space formulation. Therefore, a Genetic Algorithm is developed for solving a large-scale problem. The GA solution representation is classified into two parts, a grouping representation for hub assignment and an aircraft route representation for aircraft route cycles. Several genetic operators are specifically developed based on the problem characteristics to facilitate the search. After optimizing the solution, we compare not only the potential cost saving from the proposed system, but also the system's reliability based on its slack. To provide some insights on the effects of two-stage operation, several factors are explored such as the location of regional hubs, single and multiple two-stage routings and aircraft mix. Sensitivity analyses are conducted under different inputs, including different demand levels, aircraft operating costs and hub operating costs. Additional statistics on aircraft utilization, hub capacity utilization, circuity factor, average transfers per package, and system slack gain/loss by commodity, are analyzed to elucidate the changes in system characteristics

    Graph and String Parameters: Connections Between Pathwidth, Cutwidth and the Locality Number

    Get PDF
    We investigate the locality number, a recently introduced structural parameter for strings (with applications in pattern matching with variables), and its connection to two important graph-parameters, cutwidth and pathwidth. These connections allow us to show that computing the locality number is NP-hard but fixed-parameter tractable (when the locality number or the alphabet size is treated as a parameter), and can be approximated with ratio O(sqrt{log{opt}} log n). As a by-product, we also relate cutwidth via the locality number to pathwidth, which is of independent interest, since it improves the best currently known approximation algorithm for cutwidth. In addition to these main results, we also consider the possibility of greedy-based approximation algorithms for the locality number

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Impact of the organizational structure on operations management : the airline operations control centre case study

    Get PDF
    Documento confidencial. Não pode ser disponibilizado para consultaTese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Designing the Liver Allocation Hierarchy: Incorporating Equity and Uncertainty

    Get PDF
    Liver transplantation is the only available therapy for any acute or chronic condition resulting in irreversible liver dysfunction. The liver allocation system in the U.S. is administered by the United Network for Organ Sharing (UNOS), a scientific and educational nonprofit organization. The main components of the organ procurement and transplant network are Organ Procurement Organizations (OPOs), which are collections of transplant centers responsible for maintaining local waiting lists, harvesting donated organs and carrying out transplants. Currently in the U.S., OPOs are grouped into 11 regions to facilitate organ allocation, and a three-tier mechanism is utilized that aims to reduce organ preservation time and transport distance to maintain organ quality, while giving sicker patients higher priority. Livers are scarce and perishable resources that rapidly lose viability, which makes their transport distance a crucial factor in transplant outcomes. When a liver becomes available, it is matched with patients on the waiting list according to a complex mechanism that gives priority to patients within the harvesting OPO and region. Transplants at the regional level accounted for more than 50% of all transplants since 2000.This dissertation focuses on the design of regions for liver allocation hierarchy, and includes optimization models that incorporate geographic equity as well as uncertainty throughout the analysis. We employ multi-objective optimization algorithms that involve solving parametric integer programs to balance two possibly conflicting objectives in the system: maximizing efficiency, as measured by the number of viability adjusted transplants, and maximizing geographic equity, as measured by the minimum rate of organ flow into individual OPOs from outside of their own local area. Our results show that efficiency improvements of up to 6% or equity gains of about 70% can be achieved when compared to the current performance of the system by redesigning the regional configuration for the national liver allocation hierarchy.We also introduce a stochastic programming framework to capture the uncertainty of the system by considering scenarios that correspond to different snapshots of the national waiting list and maximize the expected benefit from liver transplants under this stochastic view of the system. We explore many algorithmic and computational strategies including sampling methods, column generation strategies, branching and integer-solution generation procedures, to aid the solution process of the resulting large-scale integer programs. We also explore an OPO-based extension to our two-stage stochastic programming framework that lends itself to more extensive computational testing. The regional configurations obtained using these models are estimated to increase expected life-time gained per transplant operation by up to 7% when compared to the current system.This dissertation also focuses on the general question of designing efficient algorithms that combine column and cut generation to solve large-scale two-stage stochastic linear programs. We introduce a flexible method to combine column generation and the L-shaped method for two-stage stochastic linear programming. We explore the performance of various algorithm designs that employ stabilization subroutines for strengthening both column and cut generation to effectively avoid degeneracy. We study two-stage stochastic versions of the cutting stock and multi-commodity network flow problems to analyze the performances of algorithms in this context
    corecore