5,492 research outputs found

    An Interview With Albert W. Tucker

    Get PDF
    The mathematical career of Albert W. Tucker, Professor Emeritus at Princeton University, spans more than 50 years. Best known today for his work in mathematical programming and the theory of games (e.g., the Kuhn-Tucker theorem, Tucker tableaux, and the Prisoner\u27s Dilemma), he was also in his earlier years prominent in topology. Outstanding teacher, administrator and leader, he has been President of the MAA, Chairman of the Princeton Mathematics Department, and course instructor, thesis advisor or general mentor to scores of active mathematicians. He is also known for his views on mathematics education and the proper interplay between teaching and research. Tucker took an active interest in this interview, helping with both the planning and the editing. The interviewer, Professor Maurer, received his Ph.D. under Tucker in 1972 and teaches at Swarthmore College

    NP-complete Problems and Physical Reality

    Full text link
    Can NP-complete problems be solved efficiently in the physical universe? I survey proposals including soap bubbles, protein folding, quantum computing, quantum advice, quantum adiabatic algorithms, quantum-mechanical nonlinearities, hidden variables, relativistic time dilation, analog computing, Malament-Hogarth spacetimes, quantum gravity, closed timelike curves, and "anthropic computing." The section on soap bubbles even includes some "experimental" results. While I do not believe that any of the proposals will let us solve NP-complete problems efficiently, I argue that by studying them, we can learn something not only about computation but also about physics.Comment: 23 pages, minor correction

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Computational aerodynamics and artificial intelligence

    Get PDF
    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics
    corecore