181 research outputs found

    Sustainable economic development : concept, principles and management from Islamic perspective

    Get PDF
    The basic concern of development in Islamic economic system is on human welfare. This is in line with the very basic objective of Islamic jurisprudence (Shari’ah ) which puts important to the welfare of the people and their relief from hardship. Economic development should be consistent with this central objective of shari`ah. The center for development process in Islam relies on man as an economic agent. It is man to be educated on the entire development process by integrating sosial development, economic development and environmental conservation and protection. This paper attempts to explain the concept, principles and management of sustainable economic development from Islamic perspective. The paper would start by defining the concept of sustainable economic development and development goals. Next, the Islamic principles for sustainable economic development would be discussed, followed by the discussion on the management of sustainable economic development from Islamic perspective. In conclusion, the paper strongly suggests the economic development process to fully adhere to the Islamic principles as the key for sustainable development which covers both the material and non-material aspects of life. Keywords: Sustainable development, Economic development, management, Islamic economics, economic syste

    Development of Low Noise-Broadband Raman Amplification Systems Based on Photonic Crystal Fibers for High Capacity DWDM Networks

    Get PDF
    The increased demand from IP traffic, video application and cell backhaul has placed fiber routes under severe stains. The high demands for large bandwidth from enormous numbers from cell sites on a network made the capacity of yesterday’s networks not adequate for today’s bandwidth demand. Carries considered Dense Wavelength Division Multiplexing (DWDM) network to overcome this issue. Recently, there has been growing interest in fiber Raman amplifiers due to their capability to upgrade the wavelength-division-multiplexing bandwidth, arbitrary gain bandwidth. In addition, photonic crystal fibers have been widely modeled, studied, and fabricated due to their peculiar properties that cannot be achieved with conventional fibers. The focus of this thesis is to develop a low-noise broadband Raman amplification system based on photonic crystal Fiber that can be implemented in high capacity DWDM network successfully. The design a module of photonic crystal fiber Raman amplifier is based on the knowledge of the fiber cross-sectional characteristics i.e. the geometric parameters and the Germania concentration in the dope area. The module allows to study different air-hole dimension and disposition, with or without a central doped area. In addition the design integrates distributed Raman amplifier and nonlinear optical loop mirror to improve the signal to noise ratio and overall gain in large capacity DWDM network

    Omega network hash construction

    Get PDF
    Cryptographic hash functions are very common and important cryptographic primitives. They are commonly used for data integrity checking and data authentication. Their architecture is based on the Merkle-Damgard construction, which takes in a variablelength input and produces a fixed-length hash value. The basic Merkle-Damgard construction runs over the input sequentially, which can lead to problems when the input size is large since the computation time increases linearly. Therefore, an alternative architecture which can reduce the computation time is needed, especially in today's world where multi-core processors and multithreaded programming are common. An Omega Network Hash Construction that can run parallel on multi-core machine has been proposed as alternative hash function's construction. The Omega Network Hash Construction performs better than the Merkle-Damgard construction, and its permutation architecture shows that its security level in term of producing randomness digest value is better than Merkle-Damgard construction

    Analysis and reduction of stimulated raman scattering in DWDM fibre optic communication system

    Get PDF
    Stimulated Raman scattering effect is one of the Non linear effects in Dense wavelength Division Multiplexed (DWDM) Fibre Optic communication system. The effect of Stimulated Raman Scattering causes power to be transferred from lower wavelength channel to higher wavelength channel. In the long haul transmission system, Dense Wavelength Division Multiplexing is a possible technique to use. In addition, long haul transmission level power and optical amplifier are needed to be considered. Feeding the high power to the fiber can also activate the effect of nonlinearity like Stimulated Raman Scattering (SRS). SRS effects aredecrease the peak power, decrease the OSNR, andoptical crosstalk andbut increase bit errors is the main destructive phenomena in high data rate optical communication systems.This thesis analyses the effect of SRS in DWDM fibre optic communication system on the power distribution of 8x10Gbps and 16x10Gbpsafter propagates along 25 km, 50 km, 75 km and 100 km along single mode fibre optic cable. SRS effect is studied for various power levels of individual channels which are simulated using Optisystem 8.0 in order to obtainthe effect of SRS like optical spectrum after transmission through the fibre optic cable. SRS effect is reduced by using backward Raman amplifier. The performance results are evaluated in term of eye diagram and bit error rate BER) using a single pump with 1427 nm wavelength and different pump power. An 8 channel DWDM fibre optic communication system with below than 10mW input power and 25 km fibre optic length; and 8 channel has no effect of SRS

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators

    Advanced measurement techniques in optical fiber sensor and communication systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Management of fiber physical effects in high-speed optical communication and sensor systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Generation and optimization of picosecond optical pulses for use in hybrid WDM/OTDM networks

    Get PDF
    The burgeoning demand for broadband services such as database queries, home shopping, video-on-demand, remote education, telemedicine and videoconferencing will push the existing networks to their limits. This demand was mainly fueled by the brisk proliferation of Personal Computers (PC) together with the exceptional increases in their storage capacity and processing capabilities and the widespread availability of the internet. Hence the necessity, to develop high-speed optical technologies in order to construct large capacity networks, arises. Two of the most popular multiplexing techniques available in the optical domain that are used in the building of such high capacity networks, are Wavelength Division Multiplexing (WDM) and Optical Time Division Multiplexing (OTDM). However merging these two techniques to form very high-speed hybrid WDM/OTDM networks brings about the merits of both multiplexing technologies. This thesis examines the development of one of the key components (picosecond optical pulses) associated to such high-speed systems. Recent analysis has shown that RZ format is superior to conventional NRZ systems as it is easier to compensate for dispersion and nonlinear effects in the fibre by employing soliton-like propagation. In addition to this development, the use of wavelength tunability for dynamic provisioning is another area that is actively researched on. Self-seeding of a gain switched Fabry Perot laser is shown to one of the simplest and cost effective methods of generating, transform limited optical pulses that are wavelength tunable over very wide ranges. One of the vital characteristics of the above mentioned pulse sources, is their Side Mode Suppression Ratio (SMSR). This thesis examines in detail how the pulse SMSR affects the performance of high-speed WDM/OTDM systems that employ self-seeded gain-switched pulse sources
    corecore