91 research outputs found

    TriHex: combining formation flying, general circular orbits and alias-free imaging, for high resolution L-band aperture synthesis

    Get PDF
    The Soil Moisture and Ocean Salinity (SMOS) mission of the European Space Agency (ESA), together with NASA’s Soil Moisture Active Passive (SMAP) mission, is providing a wealth of information to the user community for a wide range of applications. Although both missions are still operational, they have significantly exceeded their design life time. For this reason, ESA is looking at future mission concepts, which would adequately address the requirements of the passive L-band community beyond SMOS and SMAP. This article proposes one mission concept, TriHex, which has been found capable of achieving high spatial resolution, radiometric resolution, and accuracy, approaching the user needs. This is possible by the combination of aperture synthesis, formation flying, the use of general circular orbits, and alias-free imaging.Peer ReviewedPostprint (author's final draft

    Determination of Best Low-Frequency Microwave Antenna Approach for Future High Resolution Measurements from Space

    Get PDF
    Microwave remote sensing measurements at L-band (~1.2-1.6 GHz) of geophysical parameters such as soil moisture will need to be at higher spatial resolution than current systems (SMOS/ SMAP/ Aquarius) in order to meet the requirements of land surface, ocean, and numerical weather prediction models in the near future, which will operate at ~9-15 km global grids and 1-3 km regional grids in the next few years. In order to make progress toward these needed spatial resolutions, advancements in technology are necessary which would lead to improved effective (i.e. equivalent) antenna size. An architecture trade study was conducted to quantitatively define the value and limits of different microwave technology paths, and to select the most appropriate path to achieve the high spatial resolution required by science in the future without sacrificing performance, accuracy, and global coverage

    De campañas de medidas a productos de salinidad: un tributo a las contribuciones de Jordi Font a la mision SMOS

    Get PDF
    Camps, Adriano ... et al.-- Special volume: Planet Ocean. Scientia Marina 80(Suppl.1) 2016.-- 14 pages, 20 figures[EN] This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre[ES] Este artículo resume algunas de las actividades en las que Jordi Font, profesor de investigación y jefe del Departamento de Física y Tecnología Oceanográfica, del Institut de Ciències del Mar (CSIC) en Barcelona, ha estado desarrollando como co-Investigador Principal de la parte de la misión SMOS de la ESA, una misión Earth Explorer, desde la perspectiva del Remote Sensing Lab, de la Universitat Politècnica de Catalunya. Seguramente, estamos olvidando algunas de sus muchas contribuciones a la teledetección de la salinidad, pero esperamos que esta revisión dé una idea de la importancia de su trabajo. Este artículo se focaliza en los siguientes puntos: 1) las medidas de alta calidad de la constante dieléctrica del agua marina, 2) las campañas de medidas WISE y EuroSTARRS que ayudaron a la definición del modelo geofísico relacionando la temperatura de brillo con el estado del mar, 3) la campaña de medidas FROG 2003 que ayudó a entender la emisión de la espuma marina 4) presentación de las técnicas de GNSS-R para la mejora de la recuperación de la salinidad superficial 5) campañas para la caracterización del instrumento y 6) la implantación del centro de procesado operacional de niveles 3 y 4 en el SMOS Barcelona Expert CentreThis work has been performed under research grants TEC2005-06863-C02-01/TCM, ESP2005-06823-C05 and ESP2007-65667-C04, AYA2008-05906-C02-01/ESP, AYA2010-22062-C05 and ESP2015-70014-C2-1-R, and EURYI 2004 awardPeer Reviewe

    De campañas de medidas a productos de salinidad: un tributo a las contribuciones de Jordi Font a la mision SMOS

    Get PDF
    This article summarizes some of the activities in which Jordi Font, research professor and head of the Department of Physical and Technological Oceanography, Institut de Ciències del Mar (CSIC, Spanish National Research Council) in Barcelona, has been involved as co-Principal Investigator for Ocean Salinity of the European Space Agency Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Mission from the perspective of the Remote Sensing Lab at the Universitat Politècnica de Catalunya. We have probably left out some of his many contributions to salinity remote sensing, but we hope that this review will give an idea of the importance of his work. We focus on the following issues: 1) the new accurate measurements of the sea water dielectric constant, 2) the WISE and EuroSTARRS field experiments that helped to define the geophysical model function relating brightness temperature to sea state, 3) the FROG 2003 field experiment that helped to understand the emission of sea foam, 4) GNSS-R techniques for improving sea surface salinity retrieval, 5) instrument characterization campaigns, and 6) the operational implementation of the Processing Centre of Levels 3 and 4 at the SMOS Barcelona Expert Centre.Este artículo resume algunas de las actividades en las que Jordi Font, profesor de investigación y jefe del Departamento de Física y Tecnología Oceanográfica, del Institut de Ciències del Mar (CSIC) en Barcelona, ha estado desarrollando como co-Investigador Principal de la parte de la misión SMOS de la ESA, una misión Earth Explorer, desde la perspectiva del Remote Sensing Lab, de la Universitat Politècnica de Catalunya. Seguramente, estamos olvidando algunas de sus muchas contribuciones a la teledetección de la salinidad, pero esperamos que esta revisión dé una idea de la importancia de su trabajo. Este artículo se focaliza en los siguientes puntos: 1) las medidas de alta calidad de la constante dieléctrica del agua marina, 2) las campañas de medidas WISE y EuroSTARRS que ayudaron a la definición del modelo geofísico relacionando la temperatura de brillo con el estado del mar, 3) la campaña de medidas FROG 2003 que ayudó a entender la emisión de la espuma marina 4) presentación de las técnicas de GNSS-R para la mejora de la recuperación de la salinidad superficial 5) campañas para la caracterización del instrumento y 6) la implantación del centro de procesado operacional de niveles 3 y 4 en el SMOS Barcelona Expert Centre

    Selection of the key earth observation sensors and platforms focusing on applications for Polar Regions in the scope of Copernicus system 2020-2030

    Get PDF
    An optimal payload selection conducted in the frame of the H2020 ONION project (id 687490) is presented based on the ability to cover the observation needs of the Copernicus system in the time period 2020–2030. Payload selection is constrained by the variables that can be measured, the power consumption, and weight of the instrument, and the required accuracy and spatial resolution (horizontal or vertical). It involved 20 measurements with observation gaps according to the user requirements that were detected in the top 10 use cases in the scope of Copernicus space infrastructure, 9 potential applied technologies, and 39 available commercial platforms. Additional Earth Observation (EO) infrastructures are proposed to reduce measurements gaps, based on a weighting system that assigned high relevance for measurements associated to Marine for Weather Forecast over Polar Regions. This study concludes with a rank and mapping of the potential technologies and the suitable commercial platforms to cover most of the requirements of the top ten use cases, analyzing the Marine for Weather Forecast, Sea Ice Monitoring, Fishing Pressure, and Agriculture and Forestry: Hydric stress as the priority use cases.Peer ReviewedPostprint (published version

    Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain

    Get PDF

    Observation and integrated Earth-system science: a roadmap for 2016–2025

    Get PDF
    This report is the response to a request by the Committee on Space Research of the International Council for Science to prepare a roadmap on observation and integrated Earth-system science for the coming ten years. Its focus is on the combined use of observations and modelling to address the functioning, predictability and projected evolution of interacting components of the Earth system on timescales out to a century or so. It discusses how observations support integrated Earth-system science and its applications, and identifies planned enhancements to the contributing observing systems and other requirements for observations and their processing. All types of observation are considered, but emphasis is placed on those made from space. The origins and development of the integrated view of the Earth system are outlined, noting the interactions between the main components that lead to requirements for integrated science and modelling, and for the observations that guide and support them. What constitutes an Earth-system model is discussed. Summaries are given of key cycles within the Earth system. The nature of Earth observation and the arrangements for international coordination essential for effective operation of global observing systems are introduced. Instances are given of present types of observation, what is already on the roadmap for 2016–2025 and some of the issues to be faced. Observations that are organised on a systematic basis and observations that are made for process understanding and model development, or other research or demonstration purposes, are covered. Specific accounts are given for many of the variables of the Earth system. The current status and prospects for Earth-system modelling are summarized. The evolution towards applying Earth-system models for environmental monitoring and prediction as well as for climate simulation and projection is outlined. General aspects of the improvement of models, whether through refining the representations of processes that are already incorporated or through adding new processes or components, are discussed. Some important elements of Earth-system models are considered more fully. Data assimilation is discussed not only because it uses observations and models to generate datasets for monitoring the Earth system and for initiating and evaluating predictions, in particular through reanalysis, but also because of the feedback it provides on the quality of both the observations and the models employed. Inverse methods for surface-flux or model-parameter estimation are also covered. Reviews are given of the way observations and the processed datasets based on them are used for evaluating models, and of the combined use of observations and models for monitoring and interpreting the behaviour of the Earth system and for predicting and projecting its future. A set of concluding discussions covers general developmental needs, requirements for continuity of space-based observing systems, further long-term requirements for observations and other data, technological advances and data challenges, and the importance of enhanced international co-operation

    Architectures and synchronization techniques for distributed satellite systems: a survey

    Get PDF
    Cohesive Distributed Satellite Systems (CDSSs) is a key enabling technology for the future of remote sensing and communication missions. However, they have to meet strict synchronization requirements before their use is generalized. When clock or local oscillator signals are generated locally at each of the distributed nodes, achieving exact synchronization in absolute phase, frequency, and time is a complex problem. In addition, satellite systems have significant resource constraints, especially for small satellites, which are envisioned to be part of the future CDSSs. Thus, the development of precise, robust, and resource-efficient synchronization techniques is essential for the advancement of future CDSSs. In this context, this survey aims to summarize and categorize the most relevant results on synchronization techniques for Distributed Satellite Systems (DSSs). First, some important architecture and system concepts are defined. Then, the synchronization methods reported in the literature are reviewed and categorized. This article also provides an extensive list of applications and examples of synchronization techniques for DSSs in addition to the most significant advances in other operations closely related to synchronization, such as inter-satellite ranging and relative position. The survey also provides a discussion on emerging data-driven synchronization techniques based on Machine Learning (ML). Finally, a compilation of current research activities and potential research topics is proposed, identifying problems and open challenges that can be useful for researchers in the field.This work was supported by the Luxembourg National Research Fund (FNR), through the CORE Project COHEsive SATellite (COHESAT): Cognitive Cohesive Networks of Distributed Units for Active and Passive Space Applications, under Grant FNR11689919.Award-winningPostprint (published version

    Text mining and natural language processing for the early stages of space mission design

    Get PDF
    Final thesis submitted December 2021 - degree awarded in 2022A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes.A considerable amount of data related to space mission design has been accumulated since artificial satellites started to venture into space in the 1950s. This data has today become an overwhelming volume of information, triggering a significant knowledge reuse bottleneck at the early stages of space mission design. Meanwhile, virtual assistants, text mining and Natural Language Processing techniques have become pervasive to our daily life. The work presented in this thesis is one of the first attempts to bridge the gap between the worlds of space systems engineering and text mining. Several novel models are thus developed and implemented here, targeting the structuring of accumulated data through an ontology, but also tasks commonly performed by systems engineers such as requirement management and heritage analysis. A first collection of documents related to space systems is gathered for the training of these methods. Eventually, this work aims to pave the way towards the development of a Design Engineering Assistant (DEA) for the early stages of space mission design. It is also hoped that this work will actively contribute to the integration of text mining and Natural Language Processing methods in the field of space mission design, enhancing current design processes
    corecore