11 research outputs found

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst-case efficiency of (1-(1/e)) relative to the optimal node embedding, or VNET embedding if virtual links are mapped to exactly one physical link. This bound is optimal, that is, no better polynomial-time approximation algorithm exists, unless P=NP. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared to existing distributed VNET embedding solutions, and we show how by appropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.CNS-0963974 - National Science Foundationhttp://www.cs.bu.edu/fac/matta/Papers/ToN-CAD.pdfAccepted manuscrip

    A policy-based architecture for virtual network embedding

    Full text link
    Network virtualization is a technology that enables multiple virtual instances to coexist on a common physical network infrastructure. This paradigm fostered new business models, allowing infrastructure providers to lease or share their physical resources. Each virtual network is isolated and can be customized to support a new class of customers and applications. To this end, infrastructure providers need to embed virtual networks on their infrastructure. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto a physical network. Heuristics to solve the embedding problem have exploited several policies under different settings. For example, centralized solutions have been devised for small enterprise physical networks, while distributed solutions have been proposed over larger federated wide-area networks. In this thesis we present a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the three (invariant) embedding mechanisms: physical resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding efficiency, and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel and existing policy configurations are compared via extensive simulations, and over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974

    VINEA: a policy-based virtual network embedding architecture

    Full text link
    Network virtualization has enabled new business models by allowing infrastructure providers to lease or share their physical network. To concurrently run multiple customized virtual network services, such infrastructure providers need to run a virtual network embedding protocol. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto the physical network. We present the design and implementation of a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the (invariant) embedding mechanisms: resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding efficiency and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel policy configurations are compared over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities.National Science Foundation (CNS-0963974

    A policy-based architecture for virtual network embedding (PhD thesis)

    Full text link
    Network virtualization is a technology that enables multiple virtual instances to coexist on a common physical network infrastructure. This paradigm fostered new business models, allowing infrastructure providers to lease or share their physical resources. Each virtual network is isolated and can be customized to support a new class of customers and applications. To this end, infrastructure providers need to embed virtual networks on their infrastructure. The virtual network embedding is the (NP-hard) problem of matching constrained virtual networks onto a physical network. Heuristics to solve the embedding problem have exploited several policies under different settings. For example, centralized solutions have been devised for small enterprise physical networks, while distributed solutions have been proposed over larger federated wide-area networks. In this thesis we present a policy-based architecture for the virtual network embedding problem. By policy, we mean a variant aspect of any of the three (invariant) embedding mechanisms: physical resource discovery, virtual network mapping, and allocation on the physical infrastructure. Our architecture adapts to different scenarios by instantiating appropriate policies, and has bounds on embedding enablesciency, and on convergence embedding time, over a single provider, or across multiple federated providers. The performance of representative novel and existing policy configuration are compared via extensive simulations, and over a prototype implementation. We also present an object model as a foundation for a protocol specification, and we release a testbed to enable users to test their own embedding policies, and to run applications within their virtual networks. The testbed uses a Linux system architecture to reserve virtual node and link capacities

    Design of an Extensible Network Testbed with Heterogeneous Components

    Get PDF
    Virtualized network infrastructures are currently deployed in both research and commercial contexts. The complexity of the virtualization layer varies greatly in different deployments, ranging from cloud computing environments, to carrier Ethernet applications using stacked VLANs, to networking testbeds. In all of these cases, there are many users sharing the resources of one provider, where each user expects their resources to be isolated from all other users. Our work in this area is focused on network testbeds. In particular, we present the design of the latest version of the Open Network Laboratory (ONL) testbed. This redesign generalizes the underlying infrastructure to support resource extensibility and heterogeneity at a fundamental level. New types of resources (e.g., multicore PCs, FPGAs, network processors, etc) can be added to the testbed without modifying any testbed infrastructure software. Resource types can also be extended to support multiple distinct sets of functionality (e.g., an FPGA might act as a router, a switch, or a traffic generator). Moreover, users can dynamically add new resource extensions without any modification to the existing infrastructure

    The Virtual Network Scheduling Problem for Heterogeneous Network Emulation Testbeds

    Get PDF
    Network testbeds such as Emulab and the Open Network Laboratory use virtualization to enable users to define end user virtual networks within a shared substrate. This involves mapping users\u27 virtual network nodes onto distinct substrate components and mapping virtual network links onto substrate paths. The mappings guarantee that different users\u27 activities can not interfere with one another. The problem of mapping virtual networks onto a shared substrate is a variant of the general graph embedding problem, long known to be NP-hard. In this paper, we focus on a more general version of the problem that supports advance scheduling of virtual network mappings. We experimentally study the performance of heuristic testbed schedulers in the context of the Open Network Laboratory. Our algorithms incorporate Mixed Integer Programs to optimally solve key subproblems, are fast enough to respond to reservation requests in under one second, and rarely reject requests needlessly

    NETEMBED: A Network Resource Mapping Service for Distributed Applications

    Full text link
    Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.National Science Foundation (CNS Cybertrust 0524477, NSF CNS NeTS 0520166, NSF CNS ITR 0205294, EIA RI 0202067

    Lessons from resource allocators for large-scale multiuser testbeds

    No full text
    Resource allocation is a key aspect of shared testbed infrastructures such as PlanetLab and Emulab. Despite their many differences, both types of testbed have many resource allocation issues in common. In this paper we explore issues related to designing a general resource allocation interface that is sufficient for a wide variety of testbeds, current and future. Our explorations are informed by our experience developing and running Emulab’s “assign ” resource allocator and the “SWORD ” resource discoverer, our experience with the PlanetLab and Emulab testbeds, and our projection of future testbed needs.

    On distributed virtual network embedding with guarantees

    Full text link
    To provide wide-area network services, resources from different infrastructure providers are needed. Leveraging the consensus-based resource allocation literature, we propose a general distributed auction mechanism for the (NP-hard) virtual network (VNET) embedding problem. Under reasonable assumptions on the bidding scheme, the proposed mechanism is proven to converge, and it is shown that the solutions guarantee a worst case efficiency of (?????) relative to the optimal solution, and that this bound is optimal, that is, no better approximation exists. Using extensive simulations, we confirm superior convergence properties and resource utilization when compared with existing distributed VNET embedding solutions, and we show how byappropriate policy design, our mechanism can be instantiated to accommodate the embedding goals of different service and infrastructure providers, resulting in an attractive and flexible resource allocation solution.This work is supported in part by the National Science Foundation under grant CNS-0963974
    corecore