14,737 research outputs found

    Knowledge formalization in experience feedback processes : an ontology-based approach

    Get PDF
    Because of the current trend of integration and interoperability of industrial systems, their size and complexity continue to grow making it more difficult to analyze, to understand and to solve the problems that happen in their organizations. Continuous improvement methodologies are powerful tools in order to understand and to solve problems, to control the effects of changes and finally to capitalize knowledge about changes and improvements. These tools involve suitably represent knowledge relating to the concerned system. Consequently, knowledge management (KM) is an increasingly important source of competitive advantage for organizations. Particularly, the capitalization and sharing of knowledge resulting from experience feedback are elements which play an essential role in the continuous improvement of industrial activities. In this paper, the contribution deals with semantic interoperability and relates to the structuring and the formalization of an experience feedback (EF) process aiming at transforming information or understanding gained by experience into explicit knowledge. The reuse of such knowledge has proved to have significant impact on achieving themissions of companies. However, the means of describing the knowledge objects of an experience generally remain informal. Based on an experience feedback process model and conceptual graphs, this paper takes domain ontology as a framework for the clarification of explicit knowledge and know-how, the aim of which is to get lessons learned descriptions that are significant, correct and applicable

    Eliciting Expertise

    No full text
    Since the last edition of this book there have been rapid developments in the use and exploitation of formally elicited knowledge. Previously, (Shadbolt and Burton, 1995) the emphasis was on eliciting knowledge for the purpose of building expert or knowledge-based systems. These systems are computer programs intended to solve real-world problems, achieving the same level of accuracy as human experts. Knowledge engineering is the discipline that has evolved to support the whole process of specifying, developing and deploying knowledge-based systems (Schreiber et al., 2000) This chapter will discuss the problem of knowledge elicitation for knowledge intensive systems in general

    Surf at MEDIQA 2019: Improving Performance of Natural Language Inference in the Clinical Domain by Adopting Pre-trained Language Model

    Full text link
    While deep learning techniques have shown promising results in many natural language processing (NLP) tasks, it has not been widely applied to the clinical domain. The lack of large datasets and the pervasive use of domain-specific language (i.e. abbreviations and acronyms) in the clinical domain causes slower progress in NLP tasks than that of the general NLP tasks. To fill this gap, we employ word/subword-level based models that adopt large-scale data-driven methods such as pre-trained language models and transfer learning in analyzing text for the clinical domain. Empirical results demonstrate the superiority of the proposed methods by achieving 90.6% accuracy in medical domain natural language inference task. Furthermore, we inspect the independent strengths of the proposed approaches in quantitative and qualitative manners. This analysis will help researchers to select necessary components in building models for the medical domain.Comment: 9 pages, Accepted to ACL 2019 workshop on BioNL
    • …
    corecore