78 research outputs found

    Advancing Deductive Program-Level Verification for Real-World Application: Lessons Learned from an Industrial Case Study

    Get PDF
    This thesis is concerned with practicability of deductive program verification on source code level. As part of a case study for the verification of real-world software, the specification and verification approach to show correctness of the virtualizing kernel PikeOS is presented. Issues within the verification process using current tools and methodologies are discussed and several aspects of these problems are then addressed in detail to improve the verification process and tool usability

    Lessons from Formally Verified Deployed Software Systems (Extended version)

    Full text link
    The technology of formal software verification has made spectacular advances, but how much does it actually benefit the development of practical software? Considerable disagreement remains about the practicality of building systems with mechanically-checked proofs of correctness. Is this prospect confined to a few expensive, life-critical projects, or can the idea be applied to a wide segment of the software industry? To help answer this question, the present survey examines a range of projects, in various application areas, that have produced formally verified systems and deployed them for actual use. It considers the technologies used, the form of verification applied, the results obtained, and the lessons that can be drawn for the software industry at large and its ability to benefit from formal verification techniques and tools. Note: a short version of this paper is also available, covering in detail only a subset of the considered systems. The present version is intended for full reference.Comment: arXiv admin note: text overlap with arXiv:1211.6186 by other author

    Efficient Refinement Checking in VCC

    Get PDF
    We propose a methodology for carrying out refinement proofs across declarative abstract models and concrete implementations in C, using the VCC verification tool. The main idea is to first perform a systematic translation from the top-level abstract model to a ghost implementation in VCC. Subsequent refinement proofs between successively refined abstract models and between abstract and concrete implementations are carried out in VCC. We propose an efficient technique to carry out these refinement checks in VCC. We illustrate our methodology with a case study in which we verify a simplified C implementation of an RTOS scheduler, with respect to its abstract Z specification. Overall, our methodology leads to efficient and automatic refinement proofs for complex systems that would typically be beyond the capability of tools such as Z/Eves or Rodin

    IronFleet: Proving Practical Distributed Systems Correct

    Get PDF
    Abstract Distributed systems are notorious for harboring subtle bugs. Verification can, in principle, eliminate these bugs a priori, but verification has historically been difficult to apply at fullprogram scale, much less distributed-system scale. We describe a methodology for building practical and provably correct distributed systems based on a unique blend of TLA-style state-machine refinement and Hoare-logic verification. We demonstrate the methodology on a complex implementation of a Paxos-based replicated state machine library and a lease-based sharded key-value store. We prove that each obeys a concise safety specification, as well as desirable liveness requirements. Each implementation achieves performance competitive with a reference system. With our methodology and lessons learned, we aim to raise the standard for distributed systems from "tested" to "correct.&quot

    Refinement-Based Verification of the FreeRTOS Scheduler in VCC

    Get PDF
    We describe our experience with verifying the scheduler-related functionality of FreeRTOS, a popular open-source embedded real-time operating system. We propose a methodology for carrying out refinement-based proofs of functional correctness of abstract data types in the popular code-level verifier VCC. We then apply this methodology to carry out a full machine-checked proof of the functional correctness of the FreeRTOS scheduler. We describe the bugs found during this exercise, the fixes made, and the effort involved

    Delta-based Verification of Software Product Families

    Get PDF
    The quest for feature- and family-oriented deductive verification of software product lines resulted in several proposals. In this paper we look at delta-oriented modeling of product lines and combine two new ideas: first, we extend Hähnle & Schaefer’s delta-oriented version of Liskov’s substitution principle for behavioral subtyping to work also for overridden behavior in benign cases. For this to succeed, programs need to be in a certain normal form. The required normal form turns out to be achievable in many cases by a set of program transformations, whose correctness is ensured by the recent technique of abstract execution. This is a generalization of symbolic execution that permits reasoning about abstract code elements. It is needed, because code deltas contain partially unknown code contexts in terms of “original” calls. Second, we devise a modular verification procedure for deltas based on abstract execution, representing deltas as abstract programs calling into unknown contexts. The result is a “delta-based” verification approach, where each modification of a method in a code delta is verified in isolation, but which overcomes the strict limitations of behavioral subtyping and works for many practical programs. The latter claim is substantiated with case studies and benchmarks
    • …
    corecore