407 research outputs found

    Continual Cross-Dataset Adaptation in Road Surface Classification

    Full text link
    Accurate road surface classification is crucial for autonomous vehicles (AVs) to optimize driving conditions, enhance safety, and enable advanced road mapping. However, deep learning models for road surface classification suffer from poor generalization when tested on unseen datasets. To update these models with new information, also the original training dataset must be taken into account, in order to avoid catastrophic forgetting. This is, however, inefficient if not impossible, e.g., when the data is collected in streams or large amounts. To overcome this limitation and enable fast and efficient cross-dataset adaptation, we propose to employ continual learning finetuning methods designed to retain past knowledge while adapting to new data, thus effectively avoiding forgetting. Experimental results demonstrate the superiority of this approach over naive finetuning, achieving performance close to fresh retraining. While solving this known problem, we also provide a general description of how the same technique can be adopted in other AV scenarios. We highlight the potential computational and economic benefits that a continual-based adaptation can bring to the AV industry, while also reducing greenhouse emissions due to unnecessary joint retraining.Comment: To be published in Proceedings of 26th IEEE International Conference on Intelligent Transportation Systems (ITSC 2023

    Learning an evolved mixture model for task-free continual learning

    Get PDF
    Recently, continual learning (CL) has gained significant interest because it enables deep learning models to acquire new knowledge without forgetting previously learnt information. However, most existing works require knowing the task identities and boundaries, which is not realistic in a real context. In this paper, we address a more challenging and realistic setting in CL, namely the Task-Free Continual Learning (TFCL) in which a model is trained on non-stationary data streams with no explicit task information. To address TFCL, we introduce an evolved mixture model whose network architecture is dynamically expanded to adapt to the data distribution shift. We implement this expansion mechanism by evaluating the probability distance between the knowledge stored in each mixture model component and the current memory buffer using the Hilbert Schmidt Independence Criterion (HSIC). We further introduce two simple dropout mechanisms to selectively remove stored examples in order to avoid memory overload while preserving memory diversity. Empirical results demonstrate that the proposed approach achieves excellent performance.Comment: Accepted by the 29th IEEE International Conference on Image Processing (ICIP 2022
    • …
    corecore