707 research outputs found

    Microkernel security evaluation.

    Get PDF
    This thesis documents the successful development and testing of a more secure industrial control system field device architecture and software. The implementation of a secure field device has had limitations in the past due to a lack of secure operating system and guidelines. With the recent verification of OK Labs SEL4 microkernel, a verified operating system for such devices is possible, creating a possibility for a secure field device following open standards using known security protocols and low level memory and functionary isolation. The virtualized prototype makes use of common hardware and an existing secure field device architecture to implement a new level of security where the device is verified to function as expected. The experimental evaluation provides performance data which indicates the usefulness of the architecture in the field and security function integration testing to guarantee secure programs can be implemented on the device. Results of the devices functionality are hopeful, showing useful performance for many applications and further development as a fully functional secure field device

    Time Protection: the Missing OS Abstraction

    Get PDF
    Timing channels enable data leakage that threatens the security of computer systems, from cloud platforms to smartphones and browsers executing untrusted third-party code. Preventing unauthorised information flow is a core duty of the operating system, however, present OSes are unable to prevent timing channels. We argue that OSes must provide time protection in addition to the established memory protection. We examine the requirements of time protection, present a design and its implementation in the seL4 microkernel, and evaluate its efficacy as well as performance overhead on Arm and x86 processors

    Towards a formally designed and verified embedded operating system: case study using the B method

    Get PDF
    The dramatic growth in practical applications for iris biometrics has been accompanied by relevant developments in the underlying algorithms and techniques. Along with the research focused on near-infrared images captured with subject cooperation, e orts are being made to minimize the trade-o between the quality of the captured data and the recognition accuracy on less constrained environments, where images are obtained at the visible wavelength, at increased distances, over simpli ed acquisition protocols and adverse lightning conditions. At a rst stage, interpolation e ects on normalization process are addressed, pointing the outcomes in the overall recognition error rates. Secondly, a couple of post-processing steps to the Daugman's approach are performed, attempting to increase its performance in the particular unconstrained environments this thesis assumes. Analysis on both frequency and spatial domains and nally pattern recognition methods are applied in such e orts. This thesis embodies the study on how subject recognition can be achieved, without his cooperation, making use of iris data captured at-a-distance, on-the-move and at visible wavelength conditions. Widely used methods designed for constrained scenarios are analyzed
    • …
    corecore