27,874 research outputs found

    The cerebellum and motor dysfunction in neuropsychiatric disorders

    Get PDF
    The cerebellum is densely interconnected with sensory-motor areas of the cerebral cortex, and in man, the great expansion of the association areas of cerebral cortex is also paralleled by an expansion of the lateral cerebellar hemispheres. It is therefore likely that these circuits contribute to non-motor cognitive functions, but this is still a controversial issue. One approach is to examine evidence from neuropsychiatric disorders of cerebellar involvement. In this review, we narrow this search to test whether there is evidence of motor dysfunction associated with neuropsychiatric disorders consistent with disruption of cerebellar motor function. While we do find such evidence, especially in autism, schizophrenia and dyslexia, we caution that the restricted set of motor symptoms does not suggest global cerebellar dysfunction. Moreover, these symptoms may also reflect involvement of other, extra-cerebellar circuits and detailed examination of specific sub groups of individuals within each disorder may help to relate such motor symptoms to cerebellar morphology

    Loss of agency in apraxia

    Get PDF
    The feeling of acting voluntarily is a fundamental component of human behavior and social life and is usually accompanied by a sense of agency. However, this ability can be impaired in a number of diseases and disorders. An important example is apraxia, a disturbance traditionally defined as a disorder of voluntary skillful movements that often results from frontal-parietal brain damage. The first part of this article focuses on direct evidence of some core symptoms of apraxia, emphasizing those with connections to agency and free will. The loss of agency in apraxia is reflected in the monitoring of internally driven action, in the perception of specifically self-intended movements and in the neural intention to act. The second part presents an outline of the evidences supporting the functional and anatomical link between apraxia and agency. The available structural and functional results converge to reveal that the frontal-parietal network contributes to the sense of agency and its impairment in disorders such as apraxia. The current knowledge on the generation of motor intentions and action monitoring could potentially be applied to develop therapeutic strategies for the clinical rehabilitation of voluntary action

    Embodying functionally relevant action sounds in patients with spinal cord injury

    Get PDF
    Growing evidence indicates that perceptual-motor codes may be associated with and influenced by actual bodily states. Following a spinal cord injury (SCI), for example, individuals exhibit reduced visual sensitivity to biological motion. However, a dearth of direct evidence exists about whether profound alterations in sensorimotor traffic between the body and brain influence audio-motor representations. We tested 20 wheelchair-bound individuals with lower skeletal-level SCI who were unable to feel and move their lower limbs, but have retained upper limb function. In a two-choice, matching-to-sample auditory discrimination task, the participants were asked to determine which of two action sounds matched a sample action sound presented previously. We tested aural discrimination ability using sounds that arose from wheelchair, upper limb, lower limb, and animal actions. Our results indicate that an inability to move the lower limbs did not lead to impairment in the discrimination of lower limb-related action sounds in SCI patients. Importantly, patients with SCI discriminated wheelchair sounds more quickly than individuals with comparable auditory experience (i.e. physical therapists) and inexperienced, able-bodied subjects. Audio-motor associations appear to be modified and enhanced to incorporate external salient tools that now represent extensions of their body schema

    A hypothesis on improving foreign accents by optimizing variability in vocal learning brain circuits

    Get PDF
    Rapid vocal motor learning is observed when acquiring a language in early childhood, or learning to speak another language later in life. Accurate pronunciation is one of the hardest things for late learners to master and they are almost always left with a non-native accent. Here I propose a novel hypothesis that this accent could be improved by optimizing variability in vocal learning brain circuits during learning. Much of the neurobiology of human vocal motor learning has been inferred from studies on songbirds. Jarvis (2004) proposed the hypothesis that as in songbirds there are two pathways in humans: one for learning speech (the striatal vocal learning pathway), and one for production of previously learnt speech (the motor pathway). Learning new motor sequences necessary for accurate non-native pronunciation is challenging and I argue that in late learners of a foreign language the vocal learning pathway becomes inactive prematurely. The motor pathway is engaged once again and learners maintain their original native motor patterns for producing speech, resulting in speaking with a foreign accent. Further, I argue that variability in neural activity within vocal motor circuitry generates vocal variability that supports accurate non-native pronunciation. Recent theoretical and experimental work on motor learning suggests that variability in the motor movement is necessary for the development of expertise. I propose that there is little trial-by-trial variability when using the motor pathway. When using the vocal learning pathway variability gradually increases, reflecting an exploratory phase in which learners try out different ways of pronouncing words, before decreasing and stabilizing once the ‘best’ performance has been identified. The hypothesis proposed here could be tested using behavioral interventions that optimize variability and engage the vocal learning pathway for longer, with the prediction that this would allow learners to develop new motor patterns that result in more native-like pronunciation

    The role of the cerebellum in unconsciuos and conscious processing of emotions: a review

    Get PDF
    Studies from the past three decades have demonstrated that there is cerebellar involvement in the emotional domain. Emotional processing in humans requires both unconscious and conscious mechanisms. A significant amount of evidence indicates that the cerebellum is one of the cerebral structures that subserve emotional processing, although conflicting data have been reported on its function in unconscious and conscious mechanisms. This review discusses the available clinical, neuroimaging and neurophysiological data on this issue. We also propose a model in which the cerebellum acts as a mediator between the internal state and external environment for the unconscious and conscious levels of emotional processing

    Perceived Vertical and Lateropulsion: Clinical Syndromes, Localization, and Prognosis

    Get PDF
    We present a clinical classification of central vestibular syndromes according to the three major planes of action of the vestibulo-ocular reflex: yaw, roll, and pitch. The plane-specific syndromes are determined by ocular motor, postural, and percep tual signs. Yaw plane signs are horizontal nystagmus, past pointing, rotational and lat eral body falls, deviation of perceived straight-ahead to the left or right. Roll plane signs are torsional nystagmus, skew deviation, ocular torsion, tilts of head, body, and perceived vertical in a clockwise or counterclockwise direction. Pitch plane signs are upbeat/downbeat nystagmus, forward/backward tilts and falls, deviations of the per ceived horizon. The thus defined vestibular syndromes allow a precise topographic analysis of brainstem lesions according to their level and side. Special emphasis is placed on the vestibular roll plane syndromes of ocular tilt reaction, lateropulsion in Wallenberg's syndrome, thalamic and cortical astasia and their association with roll plane tilt of perceived vertical. Recovery is based on a functionally significant central compensation of a vestibular tone imbalance, the mechanism of which is largely un known. Physical therapy may facilitate this central compensation, but this has not yet been proven in prospective studies

    Is Vision for Action Unconscious?

    Get PDF
    Empirical work and philosophical analysis have led to widespread acceptance that vision for action, served by the cortical dorsal stream, is unconscious. I argue that the empirical argument for this claim is unsound. That argument relies on subjects’ introspective reports. Yet on biological grounds, in light of the theory of primate cortical vision, introspection has no access to dorsal stream mediated visual states. It is thus wrongly assumed that introspective reports speak to absent phenomenology in the dorsal stream. In light of this, I consider a different conception of consciousness’s relation to agency in terms of access. While theoretical reasons suggest that the inaccessibility of the dorsal stream to conceptual report is evidence that it is unconscious, this position begs important questions. I propose a broader notion of access in respect of the guidance of intentional agency and not, narrowly, conceptual report (Note: this paper contradicts my earlier paper, "The Case for Zombie Agency")
    • …
    corecore