657 research outputs found

    Markov process-based retrieval for encrypted JPEG images

    Get PDF

    Bitstream-Based JPEG Image Encryption with File-Size Preserving

    Full text link
    An encryption scheme of JPEG images in the bitstream domain is proposed. The proposed scheme preserves the JPEG format even after encrypting the images, and the file size of encrypted images is the exact same as that of the original JPEG images. Several methods for encrypting JPEG images in the bitstream domain have been proposed. However, since some marker codes are generated or lost in the encryption process, the file size of JPEG bitstreams is generally changed due to the encryption operations. The proposed method inputs JPEG bitstreams and selectively encrypts the additional bit components of the Huffman code in the bitstreams. This feature allows us to have encrypted images with the same data size as that recoded in the image transmission process, when JPEG images are replaced with the encrypted ones by the hooking, so that the image transmission are successfully carried out after the hooking.Comment: to appear in 2018 IEEE 7th Global Conference on Consumer Electronics, Nara, JAPAN, 10th Oct., 201

    Privacy-preserving architecture for forensic image recognition

    Get PDF
    Forensic image recognition is an important tool in many areas of law enforcement where an agency wants to prosecute possessors of illegal images. The recognition of illegal images that might have undergone human imperceptible changes (e.g., a JPEG-recompression) is commonly done by computing a perceptual image hash function of a given image and then matching this hash with perceptual hash values in a database of previously collected illegal images. To prevent privacy violation, agencies should only learn about images that have been reliably detected as illegal and nothing else. In this work, we argue that the prevalent presence of separate departments in such agencies can be used to enforce the need-to-know principle by separating duties among them. This enables us to construct the first practically efficient architecture to perform forensic image recognition in a privacy-preserving manner. By deriving unique cryptographic keys directly from the images, we can encrypt all sensitive data and ensure that only illegal images can be recovered by the law enforcement agency while all other information remains protected
    • …
    corecore