3,905 research outputs found

    Path-Constrained Data Gathering Scheme

    Get PDF
    Several studies in recent years have considered the use of mobile elements for data gathering in wireless sensor networks so as to reduce the need for multi-hop forwarding among the sensor nodes and thereby prolong the network lifetime Since typically practical constraints preclude a mobile element from visiting all nodes in the sensor network the solution must involve a combination of a mobile element visiting a subset of the nodes cache points while other nodes communicate their data to the cache points wirelessly This leads to the optimization problem of minimizing the communication distance of the sensor nodes while keeping the tour length of the mobile element below a given constraint In this paper we investigate the problem of designing the mobile elements tours such that the length of each tour is below a per-determined length and the number of hops between the tours and the nodes not included in the tour is minimized To address this problem we present an algorithmic solution that consider the distribution of the nodes during the process of building the tours We compare the resulting performance of our algorithm with the best known comparable schemes in the literatur

    Data Gathering with Tour Length-Constrained

    Get PDF
    In this paper, given a single mobile element and a time deadline, we investigate the problem of designing the mobile element tour to visit subset of nodes, such that the length of this tour is bounded by the time deadline and the communication cost between nodes outside and inside the tour is minimized. The nodes that the mobile element tour visits, works as cache points that store the data of the other nodes. Several algorithms in the literature have tackled this problem by separating two phases; the construction of the mobile element tour from the computation of the forwarding trees to the cache points. In this paper, we propose algorithmic solutions that alternate between these phases and iteratively improves the outcome of each phase based on the result of the other. We compare the resulting performance of our solutions with that of previous work

    Minimizing the Deployment Cost of UAVs for Delay-Sensitive Data Collection in IoT Networks

    Get PDF
    In this paper, we study the deployment of Unmanned Aerial Vehicles (UAVs) to collect data from IoT devices, by finding a data collection tour for each UAV. To ensure the \u27freshness\u27 of the collected data, the total time spent in the tour of each UAV that consists of the UAV flying time and data collection time must be no greater than a given delay B, e.g., 20 minutes. In this paper, we consider a problem of deploying the minimum number of UAVs and finding their data collection tours, subject to the constraint that the total time spent in each tour of any UAV is no greater than B. Specifically, we study two variants of the problem: one is that a UAV needs to fly to the location of each IoT device to collect its data; the other is that a UAV is able to collect the data of an IoT device if the Euclidean distance between them is no greater than the wireless transmission range of the IoT device. For the first variant of the problem, we propose a novel 4-approximation algorithm, which improves the best approximation ratio 4 4/7 for it so far. For the second variant, we devise the very first constant factor approximation algorithm. We also evaluate the performance of the proposed algorithms via extensive experiment simulations. Experimental results show that the numbers of UAVs deployed by the proposed algorithms are from 11% to 19% less than those by existing algorithms on average

    A Networking Framework for Multi-Robot Coordination

    Get PDF
    Autonomous robots operating in real environments need to be able to interact with a dynamic world populated with objects, people, and, in general, other agents. The current generation of autonomous robots, such as the ASIMO robot by Honda or the QRIO by Sony, has showed impressive performances in mechanics and control of movements; moreover, recent literature reports encouraging results about the capability of such robots of representing themselves with respect to a dynamic external world, of planning future actions and of evaluating resulting situations in order to make new plans. However, when multiple robots are supposed to operate together, coordination and communication issues arise; while noteworthy results have been achieved with respect to the control of a single robot, novel issues arise when the actions of a robot influence another''s behavior. The increase in computational power available to systems nowadays makes it feasible, and even convenient, to organize them into a single distributed computing environment in order to exploit the synergy among different entities. This is especially true for robot teams, where cooperation is supposed to be the most natural scheme of operation, especially when robots are required to operate in highly constrained scenarios, such as inhospitable sites, remote sites, or indoor environments where strict constraints on intrusiveness must be respected. In this case, computations will be inherently network-centric, and to solve the need for communication inside robot collectives, an efficient network infrastructure must be put into place; once a proper communication channel is established, multiple robots may benefit from the interaction with each other in order to achieve a common goal. The framework presented in this paper adopts a composite networking architecture, in which a hybrid wireless network, composed by commonly available WiFi devices, and the more recently developed wireless sensor networks, operates as a whole in order both to provide a communication backbone for the robots and to extract useful information from the environment. The ad-hoc WiFi backbone allows robots to exchange coordination information among themselves, while also carrying data measurements collected from surrounding environment, and useful for localization or mere data gathering purposes. The proposed framework is called RoboNet, and extends a previously developed robotic tour guide application (Chella et al., 2007) in the context of a multi-robot application; our system allows a team of robots to enhance their perceptive capabilities through coordination obtained via a hybrid communication network; moreover, the same infrastructure allows robots to exchange information so as to coordinate their actions in order to achieve a global common goal. The working scenario considered in this paper consists of a museum setting, where guided tours are to be automatically managed. The museum is arranged both chronologically and topographically, but the sequence of findings to be visited can be rearranged depending on user queries, making a sort of dynamic virtual labyrinth with various itineraries. Therefore, the robots are able to guide visitors both in prearranged tours and in interactive tours, built in itinere depending on the interaction with the visitor: robots are able to rebuild the virtual connection between findings and, consequently, the path to be followed. This paper is organized as follows. Section 2 contains some background on multi-robot coordination, and Section 3 describes the underlying ideas and the motivation behind the proposed architecture, whose details are presented in Sections 4, 5, and 6. A realistic application scenario is described in Section 7, and finally our conclusions are drawn in Section 8
    • …
    corecore