2,822 research outputs found

    Netlist Decomposition and Candidate Generation for Analog IC Routing

    Get PDF
    Netlist decomposition and candidate generation is a non-conventional approach in the routing stage of the place and route (PnR) flow. While there has been significant research and advancement in the digital domain for automation with respect to this as well as other techniques, very little work has been done in the analog domain due to its complex constraints and specific requirements. With this proposed method, the most common requirements of Analog circuits are taken into consideration to provide candidate routes for netlists of analog Integrated Chips (IC). Netlist decomposition is an important stage of breaking down multi-pin nets into two-pin nets by adding additional nodes for each net. The proposed method takes into account blockages and constraints such as symmetry and bends to develop a new algorithm using Steiner trees and Hanan grids to generate optimal Steiner points. This method also breaks down multi-pin nets to 3-pin nets which reduces the wirelength and computations significantly. The decomposed net segments are run through Dijkstra algorithm to generate multiple candidates and an Integer Linear programming (ILP) solver is used to pick the best candidates that follow all the constraints and design rules. The experimental results show that overall wirelength is reduced by 5.16% while using 3-pin net decomposition when compared to 2-pin net decomposition. There is also a reduction in the number of metal layers used and the number of Steiner points generated. The method shows lesser computations when compared to other decomposition techniques as it avoids multiple reroutes to obtain Design Rule Check (DRC) clean routes

    Analog-Aware Schematic Synthesis

    Get PDF

    Can my chip behave like my brain?

    Get PDF
    Many decades ago, Carver Mead established the foundations of neuromorphic systems. Neuromorphic systems are analog circuits that emulate biology. These circuits utilize subthreshold dynamics of CMOS transistors to mimic the behavior of neurons. The objective is to not only simulate the human brain, but also to build useful applications using these bio-inspired circuits for ultra low power speech processing, image processing, and robotics. This can be achieved using reconfigurable hardware, like field programmable analog arrays (FPAAs), which enable configuring different applications on a cross platform system. As digital systems saturate in terms of power efficiency, this alternate approach has the potential to improve computational efficiency by approximately eight orders of magnitude. These systems, which include analog, digital, and neuromorphic elements combine to result in a very powerful reconfigurable processing machine.Ph.D
    • …
    corecore