1,059 research outputs found

    GR-RNN:Global-Context Residual Recurrent Neural Networks for Writer Identification

    Get PDF
    This paper presents an end-to-end neural network system to identify writers through handwritten word images, which jointly integrates global-context information and a sequence of local fragment-based features. The global-context information is extracted from the tail of the neural network by a global average pooling step. The sequence of local and fragment-based features is extracted from a low-level deep feature map which contains subtle information about the handwriting style. The spatial relationship between the sequence of fragments is modeled by the recurrent neural network (RNN) to strengthen the discriminative ability of the local fragment features. We leverage the complementary information between the global-context and local fragments, resulting in the proposed global-context residual recurrent neural network (GR-RNN) method. The proposed method is evaluated on four public data sets and experimental results demonstrate that it can provide state-of-the-art performance. In addition, the neural networks trained on gray-scale images provide better results than neural networks trained on binarized and contour images, indicating that texture information plays an important role for writer identification. The source code will be available: \url{https://github.com/shengfly/writer-identification}.Comment: To appear: Pattern Recognitio

    Offline Text-Independent Writer Identification based on word level data

    Full text link
    This paper proposes a novel scheme to identify the authorship of a document based on handwritten input word images of an individual. Our approach is text-independent and does not place any restrictions on the size of the input word images under consideration. To begin with, we employ the SIFT algorithm to extract multiple key points at various levels of abstraction (comprising allograph, character, or combination of characters). These key points are then passed through a trained CNN network to generate feature maps corresponding to a convolution layer. However, owing to the scale corresponding to the SIFT key points, the size of a generated feature map may differ. As an alleviation to this issue, the histogram of gradients is applied on the feature map to produce a fixed representation. Typically, in a CNN, the number of filters of each convolution block increase depending on the depth of the network. Thus, extracting histogram features for each of the convolution feature map increase the dimension as well as the computational load. To address this aspect, we use an entropy-based method to learn the weights of the feature maps of a particular CNN layer during the training phase of our algorithm. The efficacy of our proposed system has been demonstrated on two publicly available databases namely CVL and IAM. We empirically show that the results obtained are promising when compared with previous works

    Plant recognition, detection, and counting with deep learning

    Get PDF
    In agricultural and farm management, plant recognition, plant detection, and plant counting systems are crucial. We can apply these tasks to several applications, for example, plant disease detection, weed detection, fruit harvest system, and plant species identification. Plants can be identified by looking at their most discriminating parts, such as a leaf, fruit, flower, bark, and the overall plant, by considering attributes as shape, size, or color. However, the identification of plant species from field observation can be complicated, time-consuming, and requires specialized expertise. Computer vision and machine-learning techniques have become ubiquitous and are invaluable to overcome problems with plant recognition in research. Although these techniques have been of great help, image-based plant recognition is still a challenge. There are several obstacles, such as considerable species diversity, intra-class dissimilarity, inter-class similarity, and blurred resource images. Recently, the emerging of deep learning has brought substantial advances in image classification. Deep learning architectures can learn from images and notably increase their predictive accuracy. This thesis provides various techniques, including data augmentation and classification schemes, to improve plant recognition, plant detection, and plant counting system

    Automatic handwriter identification using advanced machine learning

    Get PDF
    Handwriter identification a challenging problem especially for forensic investigation. This topic has received significant attention from the research community and several handwriter identification systems were developed for various applications including forensic science, document analysis and investigation of the historical documents. This work is part of an investigation to develop new tools and methods for Arabic palaeography, which is is the study of handwritten material, particularly ancient manuscripts with missing writers, dates, and/or places. In particular, the main aim of this research project is to investigate and develop new techniques and algorithms for the classification and analysis of ancient handwritten documents to support palaeographic studies. Three contributions were proposed in this research. The first is concerned with the development of a text line extraction algorithm on colour and greyscale historical manuscripts. The idea uses a modified bilateral filtering approach to adaptively smooth the images while still preserving the edges through a nonlinear combination of neighboring image values. The proposed algorithm aims to compute a median and a separating seam and has been validated to deal with both greyscale and colour historical documents using different datasets. The results obtained suggest that our proposed technique yields attractive results when compared against a few similar algorithms. The second contribution proposes to deploy a combination of Oriented Basic Image features and the concept of graphemes codebook in order to improve the recognition performances. The proposed algorithm is capable to effectively extract the most distinguishing handwriter’s patterns. The idea consists of judiciously combining a multiscale feature extraction with the concept of grapheme to allow for the extraction of several discriminating features such as handwriting curvature, direction, wrinkliness and various edge-based features. The technique was validated for identifying handwriters using both Arabic and English writings captured as scanned images using the IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting. The results obtained clearly demonstrate the effectiveness of the proposed method when compared against some similar techniques. The third contribution is concerned with an offline handwriter identification approach based on the convolutional neural network technology. At the first stage, the Alex-Net architecture was employed to learn image features (handwritten scripts) and the features obtained from the fully connected layers of the model. Then, a Support vector machine classifier is deployed to classify the writing styles of the various handwriters. In this way, the test scripts can be classified by the CNN training model for further classification. The proposed approach was evaluated based on Arabic Historical datasets; Islamic Heritage Project (IHP) and Qatar National Library (QNL). The obtained results demonstrated that the proposed model achieved superior performances when compared to some similar method
    • …
    corecore