142 research outputs found

    Algorithm for Adapting Cases Represented in a Tractable Description Logic

    Full text link
    Case-based reasoning (CBR) based on description logics (DLs) has gained a lot of attention lately. Adaptation is a basic task in the CBR inference that can be modeled as the knowledge base revision problem and solved in propositional logic. However, in DLs, it is still a challenge problem since existing revision operators only work well for strictly restricted DLs of the \emph{DL-Lite} family, and it is difficult to design a revision algorithm which is syntax-independent and fine-grained. In this paper, we present a new method for adaptation based on the DL EL⊥\mathcal{EL_{\bot}}. Following the idea of adaptation as revision, we firstly extend the logical basis for describing cases from propositional logic to the DL EL⊥\mathcal{EL_{\bot}}, and present a formalism for adaptation based on EL⊥\mathcal{EL_{\bot}}. Then we present an adaptation algorithm for this formalism and demonstrate that our algorithm is syntax-independent and fine-grained. Our work provides a logical basis for adaptation in CBR systems where cases and domain knowledge are described by the tractable DL EL⊥\mathcal{EL_{\bot}}.Comment: 21 pages. ICCBR 201

    Axiom Pinpointing

    Full text link
    Axiom pinpointing refers to the task of finding the specific axioms in an ontology which are responsible for a consequence to follow. This task has been studied, under different names, in many research areas, leading to a reformulation and reinvention of techniques. In this work, we present a general overview to axiom pinpointing, providing the basic notions, different approaches for solving it, and some variations and applications which have been considered in the literature. This should serve as a starting point for researchers interested in related problems, with an ample bibliography for delving deeper into the details

    Persuasive Explanation of Reasoning Inferences on Dietary Data

    Get PDF
    Explainable AI aims at building intelligent systems that are able to provide a clear, and human understandable, justification of their decisions. This holds for both rule-based and data-driven methods. In management of chronic diseases, the users of such systems are patients that follow strict dietary rules to manage such diseases. After receiving the input of the intake food, the system performs reasoning to understand whether the users follow an unhealthy behaviour. Successively, the system has to communicate the results in a clear and effective way, that is, the output message has to persuade users to follow the right dietary rules. In this paper, we address the main challenges to build such systems: i) the natural language generation of messages that explain the reasoner inconsistency; ii) the effectiveness of such messages at persuading the users. Results prove that the persuasive explanations are able to reduce the unhealthy users’ behaviours
    • …
    corecore