115 research outputs found

    Generative Interpretation of Medical Images

    Get PDF

    Solving the inverse problem of electrocardiography in a realistic environment

    Get PDF
    Heart disease is a leading cause of death worldwide. Straightforward information about the cardiac electrophysiology can help to improve the quality of diagnosis of heart diseases. The inverse problem of electrocardiography and the intracardiac catheter measurement are two ways to get access to the electrophysiology in the heart. In this thesis six research topics related to these two techniques are included

    On motion in dynamic magnetic resonance imaging: Applications in cardiac function and abdominal diffusion

    Get PDF
    La imagen por resonancia magnética (MRI), hoy en día, representa una potente herramienta para el diagnóstico clínico debido a su flexibilidad y sensibilidad a un amplio rango de propiedades del tejido. Sus principales ventajas son su sobresaliente versatilidad y su capacidad para proporcionar alto contraste entre tejidos blandos. Gracias a esa versatilidad, la MRI se puede emplear para observar diferentes fenómenos físicos dentro del cuerpo humano combinando distintos tipos de pulsos dentro de la secuencia. Esto ha permitido crear distintas modalidades con múltiples aplicaciones tanto biológicas como clínicas. La adquisición de MR es, sin embargo, un proceso lento, lo que conlleva una solución de compromiso entre resolución y tiempo de adquisición (Lima da Cruz, 2016; Royuela-del Val, 2017). Debido a esto, la presencia de movimiento fisiológico durante la adquisición puede conllevar una grave degradación de la calidad de imagen, así como un incremento del tiempo de adquisición, aumentando así tambien la incomodidad del paciente. Esta limitación práctica representa un gran obstáculo para la viabilidad clínica de la MRI. En esta Tesis Doctoral se abordan dos problemas de interés en el campo de la MRI en los que el movimiento fisiológico tiene un papel protagonista. Éstos son, por un lado, la estimación robusta de parámetros de rotación y esfuerzo miocárdico a partir de imágenes de MR-Tagging dinámica para el diagnóstico y clasificación de cardiomiopatías y, por otro, la reconstrucción de mapas del coeficiente de difusión aparente (ADC) a alta resolución y con alta relación señal a ruido (SNR) a partir de adquisiciones de imagen ponderada en difusión (DWI) multiparamétrica en el hígado.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Commonalities and differences between schizophrenia and bipolar disorder

    Get PDF

    The neural correlates of consciousness and attention: Two sister processes of the brain

    Get PDF

    Neuroimaging biomarkers associated with clinical dysfunction in Parkinson disease

    Get PDF
    Parkinson disease (PD) is the second most common neurodegenerative disorder in the world, directly affecting 2-3% of the population over the age of 65. People diagnosed with the disorder can experience motor, autonomic, cognitive, sensory and neuropsychiatric symptoms that can significantly impact quality of life. Uncertainty still exists about the pathophysiological mechanisms that underlie a range of clinical features of the disorder, linked to structural as well as functional brain changes. This thesis thus aimed to uncover neuroimaging biomarkers associated with clinical dysfunction in PD. A 'hubs-and-spokes' neural circuit-based approach can contribute to this aim, by analysing the component elements and also the interconnections of important brain networks. This thesis focusses on structures within basal ganglia-thalamocortical neuronal circuits that are linked to a range functions impacted in the disorder, and that are vulnerable to the consequences of PD pathology. This thesis investigated neuronal 'hubs' by studying the morphology of the caudate nucleus, putamen, thalamus and neocortex. The caudate nucleus, putamen and thalamus are all vital subcortical 'hubs' that play important roles in a number of functional domains that are compromised in PD. The neocortex, on the other hand, has a range of 'hubs' spread across it, regions of the brain that are crucial for neuronal signalling and communication. The interconnections, or 'spokes', between these hubs and other brain regions were investigated using seed-based resting-state functional connectivity analyses. Finally, a morphological analysis was used to investigate possible structural changes to the corpus callosum, the major inter-hemispheric white matter tract of the brain, crucial to effective higher-order brain processes. This thesis demonstrates that the caudate nucleus, putamen, thalamus, corpus callosum and neocortex are all atrophied in PD participants with dementia. PD participants also demonstrated a significant correlation between volumes of the caudate nuclei and general cognitive functioning and speed, while putamina volumes were correlated with general motor function. Cognitively unimpaired PD participants demonstrated minimal morphological alterations compared to control participants, however they demonstrated significant increases in functional connectivity of the caudate nucleus, putamen and thalamus with areas across the frontal lobe, and decreases in functional connectivity with parietal and cerebellar regions. PD participants with mild cognitive impairment and dementia show decreased functional connectivity of the thalamus with paracingulate and posterior cingulate cortices, respectively. This thesis contributes a deeper understanding of the relationship between structures of basal ganglia-thalamocortical neuronal circuits, corpus callosal and neocortical morphology, and the clinical dysfunction associated with PD. This thesis suggests that functional connectivity changes are more common in early stages of the disorder, while morphological alterations are more pronounced in advanced disease stages

    DEVELOPMENT AND IMPLEMENTATION OF NOVEL STRATEGIES TO EXPLOIT 3D ULTRASOUND IMAGING IN CARDIOVASCULAR COMPUTATIONAL BIOMECHANICS

    Get PDF
    Introduction In the past two decades, major advances have been made in cardiovascular diseases assessment and treatment owing to the advent of sophisticated and more accurate imaging techniques, allowing for better understanding the complexity of 3D anatomical cardiovascular structures1. Volumetric acquisition enables the visualization of cardiac districts from virtually any perspective, better appreciating patient-specific anatomical complexity, as well as an accurate quantitative functional evaluation of chamber volumes and mass avoiding geometric assumptions2. Additionally, this scenario also allowed the evolution from generic to patient-specific 3D cardiac models that, based on in vivo imaging, faithfully represent the anatomy and different cardiac features of a given alive subject, being pivotal either in diagnosis and in planning guidance3. Precise morphological and functional knowledge about either the heart valves\u2019 apparatus and the surrounding structures is crucial when dealing with diagnosis as well as preprocedural planning4. To date, computed tomography (CT) and real-time 3D echocardiography (rt3DE) are typically exploited in this scenario since they allow for encoding comprehensive structural and dynamic information even in the fourth dimension (i.e., time)5,6. However, owing to its cost-effectiveness and very low invasiveness, 3D echocardiography has become the method of choice in most situations for performing the evaluation of cardiac function, developing geometrical models which can provide quantitative anatomical assessment7. Complementing this scenario, computational models have been introduced as numerical engineering tools aiming at adding qualitative and quantitative information on the biomechanical behavior in terms of stress-strain response and other multifactorial parameters8. In particular, over the two last decades, their applications have been ranging from elucidating the heart biomechanics underlying different patho-physiological conditions9 to predicting the effects of either surgical or percutaneous procedures, even comparing several implantation techniques and devices10. At the early stage, most of the studies focused on FE modeling in cardiac environment were based on paradigmatic models11\u201315, being mainly exploited to explore and investigate biomechanical alterations following a specific pathological scenario or again to better understand whether a surgical treatment is better or worse than another one. Differently, nowadays the current generation of computational models heavily exploits the detailed anatomical information yielded by medical imaging to provide patient-specific analyses, paving the way toward the development of virtual surgical-planning tools16\u201319. In this direction, cardiac magnetic resonance (CMR) and CT/micro-CT are the mostly accomplished imaging modality, since they can provide well-defined images thanks to their spatial and temporal resolutions20\u201325. Nonetheless, they cannot be applied routinely in clinical practice, as it can be differently done with rt3DE, progressively became the modality of choice26 since it has no harmful effects on the patient and no radiopaque contrast agent is needed. Despite these advantages, 3D volumetric ultrasound imaging shows intrinsic limitations beyond its limited resolution: i) the deficiency of morphological detail owing to either not so easy achievable detection (e.g., tricuspid valve) or not proper acoustic window, ii) the challenge of tailoring computational models to the patient-specific scenario mimicking the morphology as well as the functionality of the investigated cardiac district (e.g., tethering effect exerted by chordal apparatus in mitral valve insufficiency associated to left ventricular dilation), and iii) the needing to systematically analyse devices performances when dealing with real-life cases where ultrasound imaging is the only performable technique but lacking of standardized acquisition protocol. Main findings In the just described scenario, the main aim of this work was focused on the implementation, development and testing of numerical strategies in order to overcome issues when dealing with 3D ultrasound imaging exploitation towards predictive patient-specific modelling approaches focused on both morphological and biomechanical analyses. Specifically, the first specific objective was the development of a novel approach integrating in vitro imaging and finite element (FE) modeling to evaluate tricuspid valve (TV) biomechanics, facing with the lack of information on anatomical features owing to the clinically evident demanding detection of this anatomical district through in vivo imaging. \u2022 An innovative and semi-automated framework was implemented to generate 3D model of TV, to quantitively describe its 3D morphology and to assess its biomechanical behaviour. At this aim, an image-based in vitro experimental approach was integrated with numerical models based on FE strategy. Experimental measurements directly performed on the benchmark (mock circulation loop) were compared with geometrical features computed on the 3D reconstructed model, pinpointing a global good consistency. Furthermore, obtained realistic reconstructions were used as the input of the FE models, even accounting for proper description of TV leaflets\u2019 anisotropic mechanical response. As done experimentally, simulations reproduced both \u201cincompetent\u201d (FTR) and \u201ccompetent-induced\u201d (PMA), proving the efficiency of such a treatment and suggesting translational potential to the clinic. The second specific aim was the implementation of a computational framework able to reproduce a functionally equivalent model of the mitral valve (MV) sub-valvular apparatus through chordae tendineae topology optimization, aiming at chordae rest length arrangement to be able to include their pre-stress state associated to specific ventricular conformation. \u2022 We sought to establish a framework to build geometrically tractable, functionally equivalent models of the MV chordae tendineae, addressing one of the main topics of the computational scientific literature towards the development of faithful patient-specific models from in vivo imaging. Exploiting the mass spring model (MSM) approach, an iterative tool was proposed aiming to the topology optimization of a paradigmatic chordal apparatus of MVs affected by functional regurgitation, in order to be able to equivalently account for tethering effect exerted by the chordae themselves. The results have shown that the algorithm actually lowered the error between the simulated valve and ground truth data, although the intensity of this improvement is strongly valve-dependent.Finally, the last specific aim was the creation of a numerical strategy able to allow for patient-specific geometrical reconstruction both pre- and post- LVAD implantation, in a specific high-risk clinical scenario being rt3DE the only available imaging technique to be used but without any acquisition protocol. \u2022 We proposed a numerical approach which allowed for a systematic and selective analysis of the mechanism associated to intraventricular thrombus formation and thrombogenic complications in a LVAD-treated dilated left ventricle (LV). Ad-hoc geometry reconstruction workflow was implemented to overcome limitations associated to imaging acquisition in this specific scenario, thus being able to generate computational model of the LV assisted with LVAD. In details, results suggested that blood stasis is influenced either by LVAD flow rate and, to a greater extent, by LV residual contractility, being the positioning of the inflow cannula insertion mandatory to be considered when dealing with LVAD thrombogenic potential assessment

    Bayesian generative learning of brain and spinal cord templates from neuroimaging datasets

    Get PDF
    In the field of neuroimaging, Bayesian modelling techniques have been largely adopted and recognised as powerful tools for the purpose of extracting quantitative anatomical and functional information from medical scans. Nevertheless the potential of Bayesian inference has not yet been fully exploited, as many available tools rely on point estimation techniques, such as maximum likelihood estimation, rather than on full Bayesian inference. The aim of this thesis is to explore the value of approximate learning schemes, for instance variational Bayes, to perform inference from brain and spinal cord MRI data. The applications that will be explored in this work mainly concern image segmentation and atlas construction, with a particular emphasis on the problem of shape and intensity prior learning, from large training data sets of structural MR scans. The resulting computational tools are intended to enable integrated brain and spinal cord morphometric analyses, as opposed to the approach that is most commonly adopted in neuroimaging, which consists in optimising separate tools for brain and spine morphometrics

    Motion-Corrected Simultaneous Cardiac PET-MR Imaging

    Get PDF
    corecore