195 research outputs found

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Automated Diagnosis of Cardiovascular Diseases from Cardiac Magnetic Resonance Imaging Using Deep Learning Models: A Review

    Full text link
    In recent years, cardiovascular diseases (CVDs) have become one of the leading causes of mortality globally. CVDs appear with minor symptoms and progressively get worse. The majority of people experience symptoms such as exhaustion, shortness of breath, ankle swelling, fluid retention, and other symptoms when starting CVD. Coronary artery disease (CAD), arrhythmia, cardiomyopathy, congenital heart defect (CHD), mitral regurgitation, and angina are the most common CVDs. Clinical methods such as blood tests, electrocardiography (ECG) signals, and medical imaging are the most effective methods used for the detection of CVDs. Among the diagnostic methods, cardiac magnetic resonance imaging (CMR) is increasingly used to diagnose, monitor the disease, plan treatment and predict CVDs. Coupled with all the advantages of CMR data, CVDs diagnosis is challenging for physicians due to many slices of data, low contrast, etc. To address these issues, deep learning (DL) techniques have been employed to the diagnosis of CVDs using CMR data, and much research is currently being conducted in this field. This review provides an overview of the studies performed in CVDs detection using CMR images and DL techniques. The introduction section examined CVDs types, diagnostic methods, and the most important medical imaging techniques. In the following, investigations to detect CVDs using CMR images and the most significant DL methods are presented. Another section discussed the challenges in diagnosing CVDs from CMR data. Next, the discussion section discusses the results of this review, and future work in CVDs diagnosis from CMR images and DL techniques are outlined. The most important findings of this study are presented in the conclusion section

    Application of AI in cardiovascular multimodality imaging

    Get PDF
    Technical advances in artificial intelligence (AI) in cardiac imaging are rapidly improving the reproducibility of this approach and the possibility to reduce time necessary to generate a report. In cardiac computed tomography angiography (CCTA) the main application of AI in clinical practice is focused on detection of stenosis, characterization of coronary plaques, and detection of myocardial ischemia. In cardiac magnetic resonance (CMR) the application of AI is focused on post-processing and particularly on the segmentation of cardiac chambers during late gadolinium enhancement. In echocardiography, the application of AI is focused on segmentation of cardiac chambers and is helpful for valvular function and wall motion abnormalities. The common thread represented by all of these techniques aims to shorten the time of interpretation without loss of information compared to the standard approach. In this review we provide an overview of AI applications in multimodality cardiac imaging

    Segmentation of heart chambers in 2-D heart ultrasounds with deep learning

    Get PDF
    Echocardiography is a non-invasive image diagnosis technique where ultrasound waves are used to obtain an image or sequence of the structure and function of the heart. The segmentation of the heart chambers on ultrasound images is a task usually performed by experienced cardiologists, in which they delineate and extract the shape of both atriums and ventricles to obtain important indexes of a patient’s heart condition. However, this task is usually hard to perform accurately due to the poor image quality caused by the equipment and techniques used and due to the variability across different patients and pathologies. Therefore, medical image processing is needed in this particular case to avoid inaccuracy and obtain proper results. Over the last decade, several studies have proved that deep learning techniques are a possible solution to this problem, obtaining good results in automatic segmentation. The major problem with deep learning techniques in medical image processing is the lack of available data to train and test these architectures. In this work we have trained, validated, and tested a convolutional neural network based on the architecture of U-Net for 2D echocardiogram chamber segmentation. The data used for the training of the convolutional neural network was the B-Mode 4-chamber apical view Echogan dataset with data augmentation techniques applied. The novelty of this work is the hyperparameter and architecture optimizations to reduce the computation time while obtaining significant training and testing accuraciesObjectius de Desenvolupament Sostenible::3 - Salut i Benesta
    • …
    corecore