1,846 research outputs found

    An improved classification approach for echocardiograms embedding temporal information

    Get PDF
    Cardiovascular disease is an umbrella term for all diseases of the heart. At present, computer-aided echocardiogram diagnosis is becoming increasingly beneficial. For echocardiography, different cardiac views can be acquired depending on the location and angulations of the ultrasound transducer. Hence, the automatic echocardiogram view classification is the first step for echocardiogram diagnosis, especially for computer-aided system and even for automatic diagnosis in the future. In addition, heart views classification makes it possible to label images especially for large-scale echo videos, provide a facility for database management and collection. This thesis presents a framework for automatic cardiac viewpoints classification of echocardiogram video data. In this research, we aim to overcome the challenges facing this investigation while analyzing, recognizing and classifying echocardiogram videos from 3D (2D spatial and 1D temporal) space. Specifically, we extend 2D KAZE approach into 3D space for feature detection and propose a histogram of acceleration as feature descriptor. Subsequently, feature encoding follows before the application of SVM to classify echo videos. In addition, comparison with the state of the art methodologies also takes place, including 2D SIFT, 3D SIFT, and optical flow technique to extract temporal information sustained in the video images. As a result, the performance of 2D KAZE, 2D KAZE with Optical Flow, 3D KAZE, Optical Flow, 2D SIFT and 3D SIFT delivers accuracy rate of 89.4%, 84.3%, 87.9%, 79.4%, 83.8% and 73.8% respectively for the eight view classes of echo videos

    Detection and diagnosis of dilated cardiomyopathy and hypertrophic cardiomyopathy using image processing techniques

    Get PDF
    AbstractMajor heart diseases like heart muscle damage and valvular problems are diagnosed using echocardiogram. Since the echocardiogram is an image or sequence of images with less information the cardiologist spends more time to predict or to make decision. Automating the detection and diagnosis of dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) is a key enabling technology in computer aided diagnosis systems. In this paper, a system is proposed to automatically detect and diagnose dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). This system performs denoising, enhancement, before left ventricular segmentation is carried out in the individual frames. Using the segmented left ventricle, the LV parameters like volume and ejection fraction (EF) are calculated and also the end-diastolic LV is extracted. The PCA and DCT features are obtained from the extracted end-diastolic LV and the classifiers BPNN, SVM and combined K-NN are used to classify the normal hearts, hearts affected with DCM and hearts affected with HCM. The PCA feature with BPNN classifier gives a highest overall accuracy of 92.04% in classifying normal and abnormal hearts. Experiments over 60 echocardiogram videos expose that the proposed system can be effectively utilized to detect and diagnose DCM and HCM

    Improved echocardiography segmentation using active shape model and optical flow

    Get PDF
    Heart disease is one of the most dangerous diseases that threaten human life. The doctor uses echocardiography to analyze heart disease. The result of echocardiography test is a video that shows the movement of the heart rate. The result of echocardiography test indicates whether the patient’s heart is normal or not by identifying a heart cavity area. Commonly it is determined by a doctor based on his own accuracy and experience. Therefore, many methods to do heart segmentation is appearing. But, the methods are a bit slow and less precise. Thus, a system that can help the doctor to analyze it better is needed. This research will develop a system that can analyze the heart rate-motion and automatically measure heart cavity area better than the existing method. This paper proposes an improved system for cardiac segmentation using median high boost filter to increase image quality, followed by the use of an active shape model and optical flow. The segmentation of the heart rate-motion and auto measurement of the heart cavity area is expected to help the doctor to analyze the condition of the patient with better accuracy. Experimental result validated our approach
    • …
    corecore