239 research outputs found

    Atypical Development of Broca’s Area in a Large Family with Inherited Stuttering

    Get PDF
    Developmental stuttering is a condition of speech dysfluency, characterised by pauses, blocks, prolongations, and sound or syllable repetitions. It affects around 1% of the population, with potential detrimental effects on mental health and long-term employment. Accumulating evidence points to a genetic aetiology, yet gene-brain associations remain poorly understood due to a lack of MRI studies in affected families. Here we report the first neuroimaging study of developmental stuttering in a family with autosomal dominant inheritance of persistent stuttering. We studied a four-generation family, sixteen family members were included in genotyping analysis. T1-weighted and diffusion weighted MRI scans were conducted on seven family members (6 male; aged 9–63 years) with two age and sex matched controls without stuttering (N = 14). Using Freesurfer, we analysed cortical morphology (cortical thickness, surface area and local gyrification index) and basal ganglia volumes. White matter integrity in key speech and language tracts (i.e. frontal aslant tract and arcuate fasciculus) was also analysed using MRtrix and probabilistic tractography. We identified a significant age by group interaction effect for cortical thickness in the left hemisphere pars opercularis (Broca’s area). In affected family members this region failed to follow the typical trajectory of age-related thinning observed in controls. Surface area analysis revealed the middle frontal gyrus region was reduced bilaterally in the family (all cortical morphometry significance levels set at a vertex-wise threshold of p < 0.01, corrected for multiple comparisons). Both the left and right globus pallidus were larger in the family than in the control group (left p = 0.017; right p=0.037), and a larger right globus pallidus was associated with more severe stuttering (rho =0.86, p=0.01). No white matter differences were identified. Genotyping identified novel loci on chromosomes 1 and 4 that map with the stuttering phenotype. Our findings denote disruption within the cortico-basal ganglia-thalamo-cortical network. The lack of typical development of these structures reflects the anatomical basis of the abnormal inhibitory control network between Broca’s area and the striatum underpinning stuttering in these individuals. This is the first evidence of a neural phenotype in a family with an autosomal dominantly inherited stuttering

    Mental sleep activity and disturbing dreams in the lifespan

    Get PDF
    Sleep significantly changes across the lifespan, and several studies underline its crucial role in cognitive functioning. Similarly, mental activity during sleep tends to covary with age. This review aims to analyze the characteristics of dreaming and disturbing dreams at dierent age brackets. On the one hand, dreams may be considered an expression of brain maturation and cognitive development, showing relations with memory and visuo-spatial abilities. Some investigations reveal that specific electrophysiological patterns, such as frontal theta oscillations, underlie dreams during sleep, as well as episodic memories in the waking state, both in young and older adults. On the other hand, considering the role of dreaming in emotional processing and regulation, the available literature suggests that mental sleep activity could have a beneficial role when stressful events occur at dierent age ranges. We highlight that nightmares and bad dreams might represent an attempt to cope the adverse events, and the degrees of cognitive-brain maturation could impact on these mechanisms across the lifespan. Future investigations are necessary to clarify these relations. Clinical protocols could be designed to improve cognitive functioning and emotional regulation by modifying the dream contents or the ability to recall/non-recall them

    The Mechanisms of Psychedelic Visionary Experiences: Hypotheses from Evolutionary Psychology

    Get PDF
    abstract: Neuropharmacological effects of psychedelics have profound cognitive, emotional, and social effects that inspired the development of cultures and religions worldwide. Findings that psychedelics objectively and reliably produce mystical experiences press the question of the neuropharmacological mechanisms by which these highly significant experiences are produced by exogenous neurotransmitter analogs. Humans have a long evolutionary relationship with psychedelics, a consequence of psychedelics' selective effects for human cognitive abilities, exemplified in the information rich visionary experiences. Objective evidence that psychedelics produce classic mystical experiences, coupled with the finding that hallucinatory experiences can be induced by many non-drug mechanisms, illustrates the need for a common model of visionary effects. Several models implicate disturbances of normal regulatory processes in the brain as the underlying mechanisms responsible for the similarities of visionary experiences produced by psychedelic and other methods for altering consciousness. Similarities in psychedelic-induced visionary experiences and those produced by practices such as meditation and hypnosis and pathological conditions such as epilepsy indicate the need for a general model explaining visionary experiences. Common mechanisms underlying diverse alterations of consciousness involve the disruption of normal functions of the prefrontal cortex and default mode network (DMN). This interruption of ordinary control mechanisms allows for the release of thalamic and other lower brain discharges that stimulate a visual information representation system and release the effects of innate cognitive functions and operators. Converging forms of evidence support the hypothesis that the source of psychedelic experiences involves the emergence of these innate cognitive processes of lower brain systems, with visionary experiences resulting from the activation of innate processes based in the mirror neuron system (MNS).View the article as published at https://www.frontiersin.org/articles/10.3389/fnins.2017.00539/ful

    DISSOCIABLE MECHANISMS OF CONCURRENT SPEECH IDENTIFICATION IN NOISE AT CORTICAL AND SUBCORTICAL LEVELS.

    Get PDF
    When two vowels with different fundamental frequencies (F0s) are presented concurrently, listeners often hear two voices producing different vowels on different pitches. Parsing of this simultaneous speech can also be affected by the signal-to-noise ratio (SNR) in the auditory scene. The extraction and interaction of F0 and SNR cues may occur at multiple levels of the auditory system. The major aims of this dissertation are to elucidate the neural mechanisms and time course of concurrent speech perception in clean and in degraded listening conditions and its behavioral correlates. In two complementary experiments, electrical brain activity (EEG) was recorded at cortical (EEG Study #1) and subcortical (FFR Study #2) levels while participants heard double-vowel stimuli whose fundamental frequencies (F0s) differed by zero and four semitones (STs) presented in either clean or noise degraded (+5 dB SNR) conditions. Behaviorally, listeners were more accurate in identifying both vowels for larger F0 separations (i.e., 4ST; with pitch cues), and this F0-benefit was more pronounced at more favorable SNRs. Time-frequency analysis of cortical EEG oscillations (i.e., brain rhythms) revealed a dynamic time course for concurrent speech processing that depended on both extrinsic (SNR) and intrinsic (pitch) acoustic factors. Early high frequency activity reflected pre-perceptual encoding of acoustic features (~200 ms) and the quality (i.e., SNR) of the speech signal (~250-350ms), whereas later-evolving low-frequency rhythms (~400-500ms) reflected post-perceptual, cognitive operations that covaried with listening effort and task demands. Analysis of subcortical responses indicated that while FFRs provided a high-fidelity representation of double vowel stimuli and the spectro-temporal nonlinear properties of the peripheral auditory system. FFR activity largely reflected the neural encoding of stimulus features (exogenous coding) rather than perceptual outcomes, but timbre (F1) could predict the speed in noise conditions. Taken together, results of this dissertation suggest that subcortical auditory processing reflects mostly exogenous (acoustic) feature encoding in stark contrast to cortical activity, which reflects perceptual and cognitive aspects of concurrent speech perception. By studying multiple brain indices underlying an identical task, these studies provide a more comprehensive window into the hierarchy of brain mechanisms and time-course of concurrent speech processing
    • …
    corecore