14 research outputs found

    Left atrial appendage automatic segmentation, in computed tomography images

    Get PDF
    The left atrial appendage is one of the anatomical places where most frequently blood thrombi occur. When migrating from the appendage, these thrombi, become blood emboli that, potentially, can compromise the physiology and/or anatomy of cardiac or cerebral blood vessels, being able to generate cerebrovascular events. The left atrial appendage segmentation is very difficult due, mainly, to its location and the identical densitometric information presents into of this appendage and around of the left atrium. In this paper, an automatic technique is proposed to segment this appendage with the purpose of generating important information to the procedure called left atrial appendage surgical closure. This information is linked to the volume and the diameters of the left atrial appendage. The technique consists of a digital pre-processing stage, based on filtering processes and definition of a region of interest and, of one segmentation stage that considers a clustering method. The results are promising and they allow us to calculate useful quantitative variables when characterizing the most lethal appendix of the human body represented by the mentioned appendage. These results are very important in clinical processes where both the shape and volume of this appendage are vital for detecting and monitoring some vascular diseases such as cardiac embolism, arterial hypertension and stroke, among others

    Faster 3D cardiac CT segmentation with Vision Transformers

    Full text link
    Accurate segmentation of the heart is essential for personalized blood flow simulations and surgical intervention planning. A recent advancement in image recognition is the Vision Transformer (ViT), which expands the field of view to encompass a greater portion of the global image context. We adapted ViT for three-dimensional volume inputs. Cardiac computed tomography (CT) volumes from 39 patients, featuring up to 20 timepoints representing the complete cardiac cycle, were utilized. Our network incorporates a modified ResNet50 block as well as a ViT block and employs cascade upsampling with skip connections. Despite its increased model complexity, our hybrid Transformer-Residual U-Net framework, termed TRUNet, converges in significantly less time than residual U-Net while providing comparable or superior segmentations of the left ventricle, left atrium, left atrial appendage, ascending aorta, and pulmonary veins. TRUNet offers more precise vessel boundary segmentation and better captures the heart's overall anatomical structure compared to residual U-Net, as confirmed by the absence of extraneous clusters of missegmented voxels. In terms of both performance and training speed, TRUNet exceeded U-Net, a commonly used segmentation architecture, making it a promising tool for 3D semantic segmentation tasks in medical imaging. The code for TRUNet is available at github.com/ljollans/TRUNet

    Pulmonary vein flow split effects in patient-specific simulations of left atrial flow

    Get PDF
    Disruptions to left atrial (LA) blood flow, such as those caused by atrial fibrillation (AF), can lead to thrombosis in the left atrial appendage (LAA) and an increased risk of systemic embolism. LA hemodynamics are influenced by various factors, including LA anatomy and function, and pulmonary vein (PV) inflow conditions. In particular, the PV flow split can vary significantly among and within patients depending on multiple factors. In this study, we investigated how changes in PV flow split affect LA flow transport, focusing for the first time on blood stasis in the LAA, using a high-fidelity patient-specific computational fluid dynamics (CFD) model. We use an Immersed Boundary Method, simulating the flow in a fixed, uniform Cartesian mesh and imposing the movement of the LA walls with a moving Lagrangian mesh generated from 4D Computerized Tomography images. We analyzed LA anatomies from eight patients with varying atrial function, including three with AF and either a LAA thrombus or a history of Transient Ischemic Attacks (TIAs). Using four different flow splits (60/40% and 55/45% through right and left PVs, even flow rate, and same velocity through each PV), we found that flow patterns are sensitive to PV flow split variations, particularly in planes parallel to the mitral valve. Changes in PV flow split also had a significant impact on blood stasis and could contribute to increased risk for thrombosis inside the LAA, particularly in patients with AF and previous LAA thrombus or a history of TIAs. Our study highlights the importance of considering patient-specific PV flow split variations when assessing LA hemodynamics and identifying patients at increased risk for thrombosis and stroke. This knowledge is relevant to planning clinical procedures such as AF ablation or the implementation of LAA occluders.This work was partially supported by Comunidad de Madrid (Synergy Grant Y2018/BIO-4858 PREFI-CM), Spanish Research Agency (AEI, grant number PID2019-107279RB-I00), Instituto de Salud Carlos III (grant numbers PI15/02211-ISBITAMI and DTS/1900063-ISBIFLOW), and by the EU-European Regional Development Fund . Funding for open access charge: Universidad de Málaga / CBUA

    Pulmonary vein flow split effects in patient-specific simulations of left atrial flow

    Get PDF
    Disruptions to left atrial (LA) blood flow, such as those caused by atrial fibrillation (AF), can lead to thrombosis in the left atrial appendage (LAA) and an increased risk of systemic embolism. LA hemodynamics are influenced by various factors, including LA anatomy and function, and pulmonary vein (PV) inflow conditions. In particular, the PV flow split can vary significantly among and within patients depending on multiple factors. In this study, we investigated how changes in PV flow split affect LA flow transport, focusing for the first time on blood stasis in the LAA, using a high-fidelity patient-specific computational fluid dynamics (CFD) model. We use an Immersed Boundary Method, simulating the flow in a fixed, uniform Cartesian mesh and imposing the movement of the LA walls with a moving Lagrangian mesh generated from 4D Computerized Tomography images. We analyzed LA anatomies from eight patients with varying atrial function, including three with AF and either a LAA thrombus or a history of Transient Ischemic Attacks (TIAs). Using four different flow splits (60/40% and 55/45% through right and left PVs, even flow rate, and same velocity through each PV), we found that flow patterns are sensitive to PV flow split variations, particularly in planes parallel to the mitral valve. Changes in PV flow split also had a significant impact on blood stasis and could contribute to increased risk for thrombosis inside the LAA, particularly in patients with AF and previous LAA thrombus or a history of TIAs. Our study highlights the importance of considering patient-specific PV flow split variations when assessing LA hemodynamics and identifying patients at increased risk for thrombosis and stroke. This knowledge is relevant to planning clinical procedures such as AF ablation or the implementation of LAA occluders.This work was partially supported by Comunidad de Madrid (Synergy Grant Y2018/BIO-4858 PREFI-CM), Spanish Research Agency (AEI, grant number PID2019-107279RB-I00), Instituto de Salud Carlos III (grant numbers PI15/02211-ISBITAMI and DTS/1900063-ISBIFLOW), and by the EU-European Regional Development Fund. Funding for open access charge: Universidad de Málaga /CBU

    New Technologies for the Treatment of Coronary and Structural Heart Diseases

    Get PDF
    There has been significant progress in the field of interventional cardiology, from the development of newer devices to newer applications of technology, resulting in improved cardiovascular outcomes. The goal of this Special Issue is to update practicing clinicians and provide a comprehensive collection of original articles, reviews, and editorials. To this end, we invited state-of-the-art reviews, including reviews of new technology and therapeutics, as well as original research in this area to be considered for inclusion in this issue. Examples include the history and evolution of interventional techniques, reviews of specific devices and technologies for coronary artery disease (i.e., stent technology, atherectomy devices, coronary physiology, intracoronary imaging, and robotics), structural heart diseases (i.e., ASD: atrial septal defect; LAAC: left atrial appendage closure; MC: MitraClip; PFO: patent foramen ovale; TAVI: transcatheter aortic valve implantation), advances in the management of challenging coronary anatomy, new biomarkers of cardiovascular disease (noncoding RNAs, etc.), and interventional techniques in the management of heart failure, peripheral arterial diseases, and pulmonary embolism. This Special Issue presents the most recent advances in the field of coronary and structural heart diseases as well as their implications for future patient care

    Left atrial appendage segmentation from 3D CCTA images for occluder placement procedure

    No full text
    Background: Percutaneous left atrial appendage (LAA) closure (placement of an occluder to close the appendage) is a novel procedure for stroke prevention in patients suffering from atrial fibrillation. The closure procedure planning requires accurate LAA measurements which can be obtained from computed tomography (CT) images. Method: We propose a novel semi-automatic LAA segmentation method from 3D coronary CT angiography (CCTA) images. The method segments the LAA, proposes the location for the occluder placement (a delineation plane between the left atrium and LAA) and calculates measurements needed for closure procedure planning. The method requires only two inputs from the user: a threshold value and a single seed point inside the LAA. Proposed location of the delineation plane can be intuitively corrected if necessary. Measurements are calculated from the segmented LAA according to the final delineation plane. Results: Performance of the proposed method is validated on 17 CCTA images, manually segmented by two medical doctors. We achieve the average dice coefficient overlap of 92.52% and 91.63% against the ground truth segmentations. The average dice coefficient overlap between the two ground truth segmentations is 92.66%. Our proposed LAA orifice localization is evaluated against the desired location of the LAA orifice determined by the expert. The average distance between our proposed location and the desired location is 2.51 mm. Conclusion: Segmentation results show high correspondence to the ground truth segmentations. The occluder placement method shows high accuracy which indicates potential in clinical procedure planning
    corecore