740 research outputs found

    Impact of uncertainties in cardiac mechanics simulations

    Get PDF
    Modeling the mechanics of the heart have led to considerable insights, but it still representes a complex and demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as a hyperelastic, near-incompressible and orthotropic material, which are properties very challenging for the numerical solution of the model. In particular, near-incompressibility is known to cause numerical issues. In this work, some improvements were done in a cardiac mechanics simulator in order to be more efficient in the treatment of these numerical issues. With the improved solver for cardiac mechanics, it was possible to run problems with higher computational cost, such as sensitivity and uncertainty quantification analyses. This type of analysis has been a topic of scientific interest to assess the possibility of translating patient-specific simulations to clinical applications. However, personalized simulations are still challenging problems, because of the wide biological variability among patients, the uncertainties in experimental measurements and in the geometric representation of the heart. Due to these uncertainties in model inputs, it is difficult to define a reliable model that can be translated to clinical applications. Recent studies have focused on quantifying uncertainties for cardiac models in order to investigate how they can influence simulation results and, consequently, how we can make the models more reliable. Then, the present work also quantifies how uncertainties in the geometry can impact in quantities of interest from cardiac mechanics. The polynomial chaos approach was used to quantify uncertainties in geometries of the left ventricle during cardiac mechanics simulations. Initially, we performed some studies using simplified geometries during ventricular filling phase simulations and, after, we quantify uncertainties in more realistic geometries during the full cardiac cycle.A modelagem da mecânica cardíaca tem levado a descobertas interessantes, porém este continua sendo um problema complexo e de alta demanda computacional, especialmente em modelos eletromecânicos fortemente acoplados. O tecido cardíaco é geralmente considerado como um material hiperelástico, quase incompressível e ortotrópico, fatores que dificultam a solução numérica do modelo. Neste trabalho, melhorias foram realizadas em um simulador da mecânica cardíaca para tratar tais problemas numéricos de forma mais eficiente. Com este simulador mais eficiente foi possível tratar problemas que demandam de um maior esfoço computacional, como as análises de sensibilidade e quantificação de incertezas, onde várias simulações precisam ser realizadas. Este tipo de análise tem sido tópico de interesse científico para avaliar a possibilidade de usar simulações personalizadas por paciente em aplicações clínicas. Porém, estas simulações ainda são problemas desafiadores, por causa da grande variabilidade biológica entre pacientes e das incertezas em medidas experimentais e em representações geométricas do coração. Devido a estas incertezas em entradas do modelo, é difícil definir um modelo confiável que possa ser usado em aplicações clínicas. Estudos recentes têm se voltado à investigação de como estas incertezas podem influenciar no resultado de simulações e, consequentemente, descobrir como tornar os modelos mais confiáveis. Então, o presente trabalho quantifica incertezas nas geometrias usadas nas simulações para investigar como quantidades de interesse da mecânica cardíaca podem ser afetadas. A abordagem do polinômio caos é utilizada para a quantificação de incertezas em geometrias do ventrículo esquerdo submetidas a simulações da mecânica cardíaca. Inicialmente, as análises foram realizadas usando geometrias simplificadas em simulações da fase de preenchimento ventricular e, posteriormente, análises de quantificação de incertezas em geometrias mais realísticas submetidas a simulações do ciclo cardíaco completo são realizadas.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superio

    From medical images to individualized cardiac mechanics: A Physiome approach

    Get PDF
    Cardiac mechanics is a branch of science that deals with forces, kinematics, and material properties of the heart, which is valuable for clinical applications and physiological studies. Although anatomical and biomechanical experiments are necessary to provide the fundamental knowledge of cardiac mechanics, the invasive nature of the procedures limits their further applicability. In consequence, noninvasive alternatives are required, and cardiac images provide an excellent source of subject-specific and in vivo information. Noninvasive and individualized cardiac mechanical studies can be achieved through coupling general physiological models derived from invasive experiments with subject-specific information extracted from medical images. Nevertheless, as data extracted from images are gross, sparse, or noisy, and do not directly provide the information of interest in general, the couplings between models and measurements are complicated inverse problems with numerous issues need to be carefully considered. The goal of this research is to develop a noninvasive framework for studying individualized cardiac mechanics through systematic coupling between cardiac physiological models and medical images according to their respective merits. More specifically, nonlinear state-space filtering frameworks for recovering individualized cardiac deformation and local material parameters of realistic nonlinear constitutive laws have been proposed. To ensure the physiological meaningfulness, clinical relevance, and computational feasibility of the frameworks, five key issues have to be properly addressed, including the cardiac physiological model, the heart representation in the computational environment, the information extraction from cardiac images, the coupling between models and image information, and also the computational complexity. For the cardiac physiological model, a cardiac physiome model tailored for cardiac image analysis has been proposed to provide a macroscopic physiological foundation for the study. For the heart representation, a meshfree method has been adopted to facilitate implementations and spatial accuracy refinements. For the information extraction from cardiac images, a registration method based on free-form deformation has been adopted for robust motion tracking. For the coupling between models and images, state-space filtering has been applied to systematically couple the models with the measurements. For the computational complexity, a mode superposition approach has been adopted to project the system into an equivalent mathematical space with much fewer dimensions for computationally feasible filtering. Experiments were performed on both synthetic and clinical data to verify the proposed frameworks

    Uncertainty Quantification and Reduction in Cardiac Electrophysiological Imaging

    Get PDF
    Cardiac electrophysiological (EP) imaging involves solving an inverse problem that infers cardiac electrical activity from body-surface electrocardiography data on a physical domain defined by the body torso. To avoid unreasonable solutions that may fit the data, this inference is often guided by data-independent prior assumptions about different properties of cardiac electrical sources as well as the physical domain. However, these prior assumptions may involve errors and uncertainties that could affect the inference accuracy. For example, common prior assumptions on the source properties, such as fixed spatial and/or temporal smoothness or sparseness assumptions, may not necessarily match the true source property at different conditions, leading to uncertainties in the inference. Furthermore, prior assumptions on the physical domain, such as the anatomy and tissue conductivity of different organs in the thorax model, represent an approximation of the physical domain, introducing errors to the inference. To determine the robustness of the EP imaging systems for future clinical practice, it is important to identify these errors/uncertainties and assess their impact on the solution. This dissertation focuses on the quantification and reduction of the impact of uncertainties caused by prior assumptions/models on cardiac source properties as well as anatomical modeling uncertainties on the EP imaging solution. To assess the effect of fixed prior assumptions/models about cardiac source properties on the solution of EP imaging, we propose a novel yet simple Lp-norm regularization method for volumetric cardiac EP imaging. This study reports the necessity of an adaptive prior model (rather than fixed model) for constraining the complex spatiotemporally changing properties of the cardiac sources. We then propose a multiple-model Bayesian approach to cardiac EP imaging that employs a continuous combination of prior models, each re-effecting a specific spatial property for volumetric sources. The 3D source estimation is then obtained as a weighted combination of solutions across all models. Including a continuous combination of prior models, our proposed method reduces the chance of mismatch between prior models and true source properties, which in turn enhances the robustness of the EP imaging solution. To quantify the impact of anatomical modeling uncertainties on the EP imaging solution, we propose a systematic statistical framework. Founded based on statistical shape modeling and unscented transform, our method quantifies anatomical modeling uncertainties and establish their relation to the EP imaging solution. Applied on anatomical models generated from different image resolutions and different segmentations, it reports the robustness of EP imaging solution to these anatomical shape-detail variations. We then propose a simplified anatomical model for the heart that only incorporates certain subject-specific anatomical parameters, while discarding local shape details. Exploiting less resources and processing for successful EP imaging, this simplified model provides a simple clinically-compatible anatomical modeling experience for EP imaging systems. Different components of our proposed methods are validated through a comprehensive set of synthetic and real-data experiments, including various typical pathological conditions and/or diagnostic procedures, such as myocardial infarction and pacing. Overall, the methods presented in this dissertation for the quantification and reduction of uncertainties in cardiac EP imaging enhance the robustness of EP imaging, helping to close the gap between EP imaging in research and its clinical application

    Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

    Get PDF
    A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved

    Personalized noninvasive imaging of volumetric cardiac electrophysiology

    Get PDF
    Three-dimensionally distributed electrical functioning is the trigger of mechanical contraction of the heart. Disturbance of this electrical flow is known to predispose to mechanical catastrophe but, due to its amenability to certain intervention techniques, a detailed understanding of subject-specific cardiac electrophysiological conditions is of great medical interest. In current clinical practice, body surface potential recording is the standard tool for diagnosing cardiac electrical dysfunctions. However, successful treatments normally require invasive catheter mapping for a more detailed observation of these dysfunctions. In this dissertation, we take a system approach to pursue personalized noninvasive imaging of volumetric cardiac electrophysiology. Under the guidance of existing scientific knowledge of the cardiac electrophysiological system, we extract the subject specific cardiac electrical information from noninvasive body surface potential mapping and tomographic imaging data of individual subjects. In this way, a priori knowledge of system physiology leads the physiologically meaningful interpretation of personal data; at the same time, subject-specific information contained in the data identifies parameters in individual systems that differ from prior knowledge. Based on this perspective, we develop a physiological model-constrained statistical framework for the quantitative reconstruction of the electrical dynamics and inherent electrophysiological property of each individual cardiac system. To accomplish this, we first develop a coupled meshfree-BE (boundary element) modeling approach to represent existing physiological knowledge of the cardiac electrophysiological system on personalized heart-torso structures. Through a state space system approach and sequential data assimilation techniques, we then develop statistical model-data coupling algorithms for quantitative reconstruction of volumetric transmembrane potential dynamics and tissue property of 3D myocardium from body surface potential recoding of individual subjects. We also introduce a data integration component to build personalized cardiac electrophysiology by fusing tomographic image and BSP sequence of the same subject. In addition, we develop a computational reduction strategy that improves the efficiency and stability of the framework. Phantom experiments and real-data human studies are performed for validating each of the framework’s major components. These experiments demonstrate the potential of our framework in providing quantitative understanding of volumetric cardiac electrophysiology for individual subjects and in identifying latent threats in individual’s heart. This may aid in personalized diagnose, treatment planning, and fundamentally, prevention of fatal cardiac arrhythmia

    Learning the dynamics and time-recursive boundary detection of deformable objects

    Get PDF
    We propose a principled framework for recursively segmenting deformable objects across a sequence of frames. We demonstrate the usefulness of this method on left ventricular segmentation across a cardiac cycle. The approach involves a technique for learning the system dynamics together with methods of particle-based smoothing as well as non-parametric belief propagation on a loopy graphical model capturing the temporal periodicity of the heart. The dynamic system state is a low-dimensional representation of the boundary, and the boundary estimation involves incorporating curve evolution into recursive state estimation. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past and future boundary estimates. Although the paper focuses on left ventricle segmentation, the method generalizes to temporally segmenting any deformable object

    Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

    Get PDF
    This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the defini-tion of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed we ag-gregate a Luenberger observer for the mechanical state and a Reduced Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the ad-vantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart
    corecore