800 research outputs found

    New early Eocene vertebrate assemblage from western India reveals a mixed fauna of European and Gondwana affinities

    Get PDF
    AbstractThe Ypresian Cambay Shale Formation at Vastan and Mangrol lignite mines in Gujarat, western India, has yielded a rich vertebrate fauna with numerous taxa of European affinities. Here we report a new, approximately contemporary vertebrate assemblage from two fossiliferous layers in the nearby mine of Tadkeshwar. These layers have yielded a similar mammal fauna with the co-occurrence of the perissodactyl-like cambaytheriid Cambaytherium thewissi, the adapoid primates Marcgodinotius indicus and cf. Asiadapis cambayensis, and the hyaenodontid Indohyaenodon raoi. The presence of these species in both Vastan and Tadkeshwar mines and at different levels suggests that the deposits between the two major lignite seams represent a single land mammal age. Apart from the aforementioned species there is a new, smaller species of Cambaytherium, and a new genus and species of esthonychid tillodont. This fauna also contains the first large early Eocene vertebrates from India, including an unidentified Coryphodon-like pantodont, a dyrosaurid crocodyliform and a new giant madtsoiid snake. Among the Tadkeshwar vertebrates several taxa are of Gondwana affinities, such as Pelomedusoides turtles, dyrosaurids, and large madtsoiids, attesting that the early Eocene was a crucial period in India during which Laurasian taxa of European affinities co-existed with relict taxa from Gondwana before the India-Asia collision. Our results suggest that terrestrial faunas could have dispersed to or from Europe during episodes of contact between the Indian subcontinent and different island blocks along the northern margin of the Neotethys, such as the Kohistan–Ladakh island-arc system. Gondwana taxa might represent remnants of ghost lineages shared with Madagascar, which reached the Indian subcontinent during the late Cretaceous; alternatively they might have come from North Africa and passed along the southern margin of the Neotethys to reach the Indian subcontinent. These dispersals would have been possible as a result of favourable paleogeographic conditions such as the particular Neotethys conformation during the beginning of the early Eocene

    A new rhynchocephalian from the late jurassic of Germany with a dentition that is unique amongst tetrapods.

    Get PDF
    Rhynchocephalians, the sister group of squamates (lizards and snakes), are only represented by the single genus Sphenodon today. This taxon is often considered to represent a very conservative lineage. However, rhynchocephalians were common during the late Triassic to latest Jurassic periods, but rapidly declined afterwards, which is generally attributed to their supposedly adaptive inferiority to squamates and/or Mesozoic mammals, which radiated at that time. New finds of Mesozoic rhynchocephalians can thus provide important new information on the evolutionary history of the group. A new fossil relative of Sphenodon from the latest Jurassic of southern Germany, Oenosaurus muehlheimensis gen. et sp. nov., presents a dentition that is unique amongst tetrapods. The dentition of this taxon consists of massive, continuously growing tooth plates, probably indicating a crushing dentition, thus representing a previously unknown trophic adaptation in rhynchocephalians. The evolution of the extraordinary dentition of Oenosaurus from the already highly specialized Zahnanlage generally present in derived rhynchocephalians demonstrates an unexpected evolutionary plasticity of these animals. Together with other lines of evidence, this seriously casts doubts on the assumption that rhynchocephalians are a conservative and adaptively inferior lineage. Furthermore, the new taxon underlines the high morphological and ecological diversity of rhynchocephalians in the latest Jurassic of Europe, just before the decline of this lineage on this continent. Thus, selection pressure by radiating squamates or Mesozoic mammals alone might not be sufficient to explain the demise of the clade in the Late Mesozoic, and climate change in the course of the fragmentation of the supercontinent of Pangaea might have played a major role

    Evolutionary relationships and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia

    Get PDF
    Atoposaurids are a group of small-bodied, extinct crocodyliforms, regarded as an important component of Jurassic and Cretaceous Laurasian semi-aquatic ecosystems. Despite the group being known for over 150 years, the taxonomic composition of Atoposauridae and its position within Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in which they have been found to occupy a range of positions from the most basal neosuchian clade to more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or novel to this study, and several ingroup taxa have never previously been included in a phylogenetic analysis. Parsimony and Bayesian approaches both recover Atoposauridae as a basal clade within Neosuchia, more stemward than coelognathosuchians, bernissartiids, and paralligatorids. Atoposauridae is a much more exclusive clade than previously recognized, comprising just three genera (Alligatorellus, Alligatorium, and Atoposaurus) that were restricted to the Late Jurassic of western Europe, and went extinct at the Jurassic/Cretaceous boundary. A putative Gondwanan atoposaurid (Brillanceausuchus) is recovered as a paralligatorid. Our results exclude both Montsecosuchus and Theriosuchus from Atoposauridae. Theriosuchus is polyphyletic, forming two groupings of advanced neosuchians. Theriosuchus (restricted to Theriosuchus pusillus, Theriosuchus guimarotae, and Theriosuchus grandinaris) spanned the Middle Jurassic to early Late Cretaceous, and is known from Eurasia and North Africa. Two Cretaceous species previously assigned to Theriosuchus (‘Theriosuchus’ ibericus and ‘Theriosuchus’ sympiestodon) are shown to be nested within Paralligatoridae, and we assign them to the new genus Sabresuchus. The revised phylogenetic placement of Theriosuchus has several implications for our understanding of eusuchian evolution. Firstly, the presence of fully pterygoidean choanae, previously regarded as a defining characteristic of Eusuchia, is not found in some basal members of Eusuchia. However, eusuchians can be distinguished from Theriosuchus and other basal neosuchians in that their choanae are posteriorly positioned, with an anterior margin medial to the posterior edge of the suborbital fenestra. This feature distinguishes eusuchians from Theriosuchus and more basal neosuchians. Secondly, our refined understanding of Theriosuchus implies that this taxon possessed only amphicoelous presacral vertebrae, and therefore fully developed vertebral procoely is likely to have evolved only once in Crocodylomorpha, on the lineage leading to Eusuchia. These and other findings presented herein will provide an important framework for understanding the neosuchian–eusuchian transition

    The Early Evolution of Rhynchosaurs

    Get PDF
    The rhynchosaurian archosauromorphs are an important and diverse group of fossil tetrapods that first appeared during the Early Triassic and probably became extinct during the early Late Triassic (early Norian). Here, the early evolution of rhynchosaurs during the Early and early Middle Triassic (Induan-Anisian: 252.2-242 Mya) is reviewed based on new anatomical observations and their implications for the taxonomy, phylogenetic relationships and macroevolutionary history of the group. A quantitative phylogenetic analysis recovered a paraphyletic genus Rhynchosaurus, with “Rhynchosaurus” brodiei more closely related to hyperodapedontines than to Rhynchosaurus articeps. Therefore, a new genus is erected, resulting in the new combination Langeronyx brodiei. A body size analysis found two independent increases in size in the evolutionary history of rhynchosaurs, one among stenaulorhynchines and the other in the hyperodapedontine lineage. Maximum likelihood fitting of phenotypic evolution models to body size data found ambiguous results, with body size evolution potentially interpreted as fitting either a non-directional Brownian motion model or a stasis model. A Dispersal-ExtinctionCladogenesis analysis reconstructed the areas that are now South Africa and Europe as the ancestral areas of Rhynchosauria and Rhynchosauridae, respectively. The reconstruction of dispersal events between geographic areas that are broadly separated paleolatitudinally implies that barriers to the dispersal of rhynchosaurs from either side of the paleo-Equator during the Middle Triassic were either absent or permeable.Fil: Ezcurra, Martin Daniel. University of Birmingham; Reino Unido. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; ArgentinaFil: Montefeltro, Felipe C.. University of Birmingham; Reino Unido. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Butler, Richard J.. University of Birmingham; Reino Unid

    A new species of Archaeoryctes from the Middle Paleocene of China and the phylogenetic diversification of Didymoconidae

    Get PDF
    Didymoconidae are an enigmatic group of Asian endemic insectivorous mammals. We describe the new didymoconid species Archaeoryctes wangi sp. nov. from the Upper Member of the Wanghudun Formation (Middle Paleocene). This new species from the Qianshan Basin (Anhui Province, China) forms an interesting geographical intermediate between A. notialis from South China and A. borealis and A. euryalis from the Mongolian Plateau. To better understand the origin and evolutionary diversification of Didymoconidae, we performed a cladistic and stratocladistic study of the Didymoconidae and various outgroups. This study of dental material did not resolve the higher level affinities of Didymoconidae, but confirms the validity of the family and its distinctiveness from the morphologically similar Sarcodontidae. Moreover, our results corroborate the current didymoconid classification with the distinction of three subfamilies: “Ardynictinae”, Kennatheriinae and Didymoconinae; “Ardynictinae” are a paraphyletic stemgroup for the two other subfamilies. Our results suggest three distinct didymoconid radiations: (1) primitive ardynictines appeared in South China from the start of the Nongshanian; their evolution continues on the Mongolian Plateau with (2) the radiation of more evolved ardynictines and kennatheriines at the start of the Middle Eocene Arshantan and (3) the origin of didymoconines at the start of the Late Eocene Ergilian

    Revision of basal macropodids from the Riversleigh World Heritage Area with descriptions of new material of Ganguroo bilamina Cooke, 1997 and a new species

    Get PDF
    The relationship of basal macropodids (Marsupialia: Macropodoidea) from the Oligo-Miocene of Australia have been unclear. Here, we describe a new species from the Bitesantennary Site within the Riversleigh's World Heritage Area (WHA), Ganguroo bites n. sp., new cranial and dental material of G. bilamina, and reassess material previously described as Bulungamaya delicata and 'Nowidgee matrix'. We performed a metric analysis of dental measurements on species of Thylogale which we then used, in combination with morphological features, to determine species boundaries in the fossils. We also performed a phylogenetic analysis to clarify the relationships of basal macropodid species within Macropodoidea. Our results support the distinction of G. bilamina, G. bites and B. delicata, but 'Nowidgee matrix' appears to be a synonym of B. delicata. The results of our phylogenetic analysis are inconclusive, but dental and cranial features suggest a close affinity between G. bilamina and macropodids. Finally, we revise the current understanding of basal macropodid diversity in Oligocene and Miocene sites at Riversleigh WHA

    The Gashatan (late Paleocene) mammal fauna from Subeng, Inner Mongolia, China

    Get PDF
    The Paleocene–Eocene boundary is of particular importance for the evolution of mammals and the poorly known Asian mammal faunas from this period have received much attention. The late Paleocene Subeng site in Inner Mongolia (China) has come under study only recently, and here we present the first complete description of its mammal fauna. Two new species are described, the neoplagiaulacid multituberculate Mesodmops tenuis sp. nov. and the praolestine nyctitheriid Bumbanius ningi sp. nov., representing stratigraphic range extensions of the respective genera into the Paleocene. Previ− ously unknown parts of the dentition are described here for the eurymylid Eomylus bayanulanensis, the sarcodontid Hyracolestes ermineus, the cimolestid Tsaganius ambiguus, the carpolestid Subengius mengi, as well as the femur of the mesonychid Dissacus serratus. For most taxa, the new specimens from Subeng provide new phylogenetic and/or biostratigraphic information. We confirm the inclusion of Hyracolestes in the Sarcodontinae and elevate this group to the rank of family, the Sarcodontidae, separate from Micropternodontidae. In the case of Subengius mengi an updated cladistic analysis of carpolestids supports the hypothesis that Subengius is derived from an evolved Elphidotarsius−like ancestor in the early to middle Tiffanian of North America. A total of 17 species is identified, including well−known biostratigraphic markers for the late Paleocene Gashatan Asian Land Mammal Age such as Lambdopsalis bulla, Prionessus sp., Palaeostylops iturus, Pseudictops lophiodon, Tribosphenomys minutus, and Dissacus serratus.We pro− pose that the Gashatan faunas are less endemic than previously thought, and result from a significant exchange with North American faunas from the late Paleocene

    New Basal Perissodactyla (Mammalia) From The Lower Eocene Ghazij Formation of Pakistan

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/109436/1/Contributions32No8-12082014.pdfDescription of Contributions32No8-12082014.pdf : Contributions Volume 32, Number

    A Review of Neogene and Quaternary Pikes of Southeastern Europe and a New Species from the Early Pleistocene of Nogaisk, Ukraine

    Get PDF
    The fish genus Esox (Teleostei, Esocidae) has been recorded from thirty late Miocene, Pliocene, and Pleistocene localities where forty-one bone-bearing strata are exposed in the territory of Ukraine, Russian Federation, and Republic of Moldova. From eight localities the genus is reported or described for the first time. A detailed description and morphological analysis of the currently available osteological material demonstrates the presence of four species in the studied area: (i) Esox sibiricus (late Miocene–early Pliocene); (ii) Esox moldavicus (early Pliocene–early Pleistocene); (iii) Esox nogaicus sp. nov. (early Pleistocene, Calabrian); (iv) Esox lucius (early–middle Pleistocene). The Northern Pike (Esox lucius) is recorded for the first time in the early Pleistocene fossil record of southeastern Europe. The new species E. nogaicus is characterized by a massive dentary with deep symphysis and the possible presence of a pair of fixed canine-like teeth near the anterior end of the vomer. Such canine teeth are seen also in certain species known only from North America, the extant Esox masquinongy, the fossil species E. columbianus, and an unnamed Miocene form. However, unlike in E. nogaicus, in the three North American species fixed canines also occur anteriorly on the palatines. The Miocene, Pliocene, and Pleistocene pikes from southeastern Europe document a greater diversity of morphologies in the past than exists today in the pike species of Europe. Changes in the predominant species of Esox in southeastern Europe are hypothesized to be driven by changing global and regional climates
    corecore