1,674 research outputs found

    Interaction of marine geodesy, satellite technology and ocean physics

    Get PDF
    The possible applications of satellite technology in marine geodesy and geodetic related ocean physics were investigated. Four major problems were identified in the areas of geodesy and ocean physics: (1) geodetic positioning and control establishment; (2) sea surface topography and geoid determination; (3) geodetic applications to ocean physics; and (4) ground truth establishment. It was found that satellite technology can play a major role in their solution. For solution of the first problem, the use of satellite geodetic techniques, such as Doppler and C-band radar ranging, is demonstrated to fix the three-dimensional coordinates of marine geodetic control if multi-satellite passes are used. The second problem is shown to require the use of satellite altimetry, along with accurate knowledge of ocean-dynamics parameters such as sea state, ocean tides, and mean sea level. The use of both conventional and advanced satellite techniques appeared to be necessary to solve the third and fourth problems

    Data compilation and evaluation of space shielding problems. Radiation hazards in space, volume III

    Get PDF
    Radiation hazards of interplanetary space and related shielding problem

    Pressure transient testing and productivity analysis for horizontal wells

    Get PDF
    This work studied the productivity evaluation and well test analysis of horizontal wells. The major components of this work consist of a 3D coupled reservoir/wellbore model, a productivity evaluation, a deconvolution technique, and a nonlinear regression technique improving horizontal well test interpretation. A 3D coupled reservoir/wellbore model was developed using the boundary element method for realistic description of the performance behavior of horizontal wells. The model is able to flexibly handle multiple types of inner and outer boundary conditions, and can accurately simulate transient tests and long-term production of horizontal wells. Thus, it can serve as a powerful tool in productivity evaluation and analysis of well tests for horizontal wells. Uncertainty of productivity prediction was preliminarily explored. It was demonstrated that the productivity estimates can be distributed in a broad range because of the uncertainties of reservoir/well parameters. A new deconvolution method based on a fast-Fourier-transform algorithm is presented. This new technique can denoise "noisy" pressure and rate data, and can deconvolve pressure drawdown and buildup test data distorted by wellbore storage. For cases with no rate measurements, a "blind" deconvolution method was developed to restore the pressure response free of wellbore storage distortion, and to detect the afterflow/unloading rate function using Fourier analysis of the observed pressure data. This new deconvolution method can unveil the early time behavior of a reservoir system masked by variable-wellbore-storage distortion, and thus provides a powerful tool to improve pressure transient test interpretation. The applicability of the method is demonstrated with a variety of synthetic and actual field cases for both oil and gas wells. A practical nonlinear regression technique for analysis of horizontal well testing is presented. This technique can provide accurate and reliable estimation of well-reservoir parameters if the downhole flow rate data are available. In the situation without flow rate measurement, reasonably reliable parameter estimation can be achieved by using the detected flow rate from blind deconvolution. It has the advantages of eliminating the need for estimation of the wellbore storage coefficient and providing reasonable estimates of effective wellbore length. This technique provides a practical tool for enhancement of horizontal well test interpretation, and its practical significance is illustrated by synthetic and actual field cases

    Evaluation of Generative Models for Predicting Microstructure Geometries in Laser Powder Bed Fusion Additive Manufacturing

    Get PDF
    In-situ process monitoring for metals additive manufacturing is paramount to the successful build of an object for application in extreme or high stress environments. In selective laser melting additive manufacturing, the process by which a laser melts metal powder during the build will dictate the internal microstructure of that object once the metal cools and solidifies. The difficulty lies in that obtaining enough variety of data to quantify the internal microstructures for the evaluation of its physical properties is problematic, as the laser passes at high speeds over powder grains at a micrometer scale. Imaging the process in-situ is complex and cost-prohibitive. However, generative modes can provide new artificially generated data. Generative adversarial networks synthesize new computationally derived data through a process that learns the underlying features corresponding to the different laser process parameters in a generator network, then improves upon those artificial renderings by evaluating through the discriminator network. While this technique was effective at delivering high-quality images, modifications to the network through conditions showed improved capabilities at creating these new images. Using multiple evaluation metrics, it has been shown that generative models can be used to create new data for various laser process parameter combinations, thereby allowing a more comprehensive evaluation of ideal laser conditions for any particular build

    Investigation of light scattering in highly reflecting pigmented coatings. Volume 3 - Monte Carlo and other statistical investigations Final report, 1 May 1963 - 30 Sep. 1966

    Get PDF
    Monte Carlo methods, Mie theory, and random walk and screen models for predicting reflective properties of paint film

    Three-dimensional finite element analysis for high velocity impact

    Get PDF
    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model

    The simulation of single phase, compressible fluid flow in fractured petroleum reservoirs using finite elements

    Get PDF
    Summary in English.Bibliography: leaves 181-193.In this thesis, commonly used equations governing the flow of fluids are reviewed, from first principles where appropriate. The assumptions that are made in the process are critically assessed and their limitations are discussed. The equations deal with flow through a porous and permeable medium, a single fracture, a network of fractures, and with the coupling of the fracture network and blocks of matrix material

    Spatiotemporal behavior and nonlinear dynamics in a phase conjugate resonator

    Get PDF
    The work described can be divided into two parts. The first part is an investigation of the transient behavior and stability property of a phase conjugate resonator (PCR) below threshold. The second part is an experimental and theoretical study of the PCR's spatiotemporal dynamics above threshold. The time-dependent coupled wave equations for four-wave mixing (FWM) in a photorefractive crystal, with two distinct interaction regions caused by feedback from an ordinary mirror, was used to model the transient dynamics of a PCR below threshold. The conditions for self-oscillation were determined and the solutions were used to define the PCR's transfer function and analyze its stability. Experimental results for the buildup and decay times confirmed qualitatively the predicted behavior. Experiments were carried out above threshold to study the spatiotemporal dynamics of the PCR as a function of Pragg detuning and the resonator's Fresnel number. The existence of optical vortices in the wavefront were identified by optical interferometry. It was possible to describe the transverse dynamics and the spatiotemporal instabilities by modeling the three-dimensional-coupled wave equations in photorefractive FWM using a truncated modal expansion approach
    corecore