98 research outputs found

    Minimum Initial Marking Estimation in Labeled Petri Nets With Unobservable Transitions

    Get PDF
    In the literature, researchers have been studying the minimum initial marking (MIM) estimation problem in the labeled Petri nets with observable transitions. This paper extends the results to labeled Petri nets with unobservable transitions (with certain special structure) and proposes algorithms for the MIM estimation (MIM-UT). In particular, we assume that the Petri net structure is given and the unobservable transitions in the net are contact-free. Based on the observation of a sequence of labels, our objective is to find the set of MIM(s) that is(are) able to produce this sequence and has(have) the smallest total number of tokens. An algorithm is developed to find the set of MIM(s) with polynomial complexity in the length of the observed label sequence. Two heuristic algorithms are also proposed to reduce the computational complexity. An illustrative example is also provided to demonstrate the proposed algorithms and compare their performance

    Diagnosis on a sliding window for partially observable Petri nets

    Get PDF
    summary:In this paper, we propose an algebraic approach to investigate the diagnosis of partially observable labeled Petri nets based on state estimation on a sliding window of a predefined length hh. Given an observation, the resulting diagnosis state can be computed while solving integer linear programming problems with a reduced subset of basis markings. The proposed approach consists in exploiting a subset of hh observations at each estimation step, which provides a partial diagnosis relevant to the current observation window. This technique allows a status update with a "forgetfulness" of past observations and enables distinguishing repetitive and punctual faults. The complete diagnosis state can be defined as a function of the partial diagnosis states interpreted on the sliding window. As the analysis shows that some basis markings can present an inconsistency with a future evolution, which possibly implies unnecessary computations of basis markings, a withdrawal procedure of these irrelevant basis markings based on linear programming is proposed

    Diagnostic Based on Estimation Using Linear Programming for Partially Observable Petri Nets with Indistinguishable Events

    Get PDF
    In this paper, we design a diagnostic technique for a partially observed labelled Petri net where the faults of the system are modelled by unobservable transitions. The fault detection and isolation uses an on-line count vector estimation associated with the firing of unobservable transitions exploiting the observation of firing occurrences of some observable transitions. The support of the approach is an algebraic description of the process under the form of a polyhedron developed on a receding horizon. We show that a diagnostic can be made despite that different transitions can share the same label and that the unobservable part of the Petri net can contain circuits

    On the Equivalence of Observation Structures for Petri Net Generators

    Get PDF
    Observation structures considered for Petri net generators usually assume that the firing of transitions may be observed through a static mask and that the marking of some places may be measurable. These observation structures, however, are rather limited, namely they do not cover all cases of practical interest where complex observations are possible. We consider in this paper more general ones, by correspondingly defining two new classes of Petri net generators: labeled Petri nets with outputs (LPNOs) and adaptive labeled Petri nets (ALPNs). To compare the modeling power of different Petri net generators, the notion of observation equivalence is proposed. ALPNs are shown to be the class of bounded generators possessing the highest modeling power. Looking for bridges between the different formalisms, we first present a general procedure to convert a bounded LPNO into an equivalent ALPN or even into an equivalent labeled Petri net (if any exists). Finally, we discuss the possibility of converting an unbounded LPNO into an equivalent ALPN

    Supervisory Control and Analysis of Partially-observed Discrete Event Systems

    Get PDF
    Nowadays, a variety of real-world systems fall into discrete event systems (DES). In practical scenarios, due to facts like limited sensor technique, sensor failure, unstable network and even the intrusion of malicious agents, it might occur that some events are unobservable, multiple events are indistinguishable in observations, and observations of some events are nondeterministic. By considering various practical scenarios, increasing attention in the DES community has been paid to partially-observed DES, which in this thesis refer broadly to those DES with partial and/or unreliable observations. In this thesis, we focus on two topics of partially-observed DES, namely, supervisory control and analysis. The first topic includes two research directions in terms of system models. One is the supervisory control of DES with both unobservable and uncontrollable events, focusing on the forbidden state problem; the other is the supervisory control of DES vulnerable to sensor-reading disguising attacks (SD-attacks), which is also interpreted as DES with nondeterministic observations, addressing both the forbidden state problem and the liveness-enforcing problem. Petri nets (PN) are used as a reference formalism in this topic. First, we study the forbidden state problem in the framework of PN with both unobservable and uncontrollable transitions, assuming that unobservable transitions are uncontrollable. For ordinary PN subject to an admissible Generalized Mutual Exclusion Constraint (GMEC), an optimal on-line control policy with polynomial complexity is proposed provided that a particular subnet, called observation subnet, satisfies certain conditions in structure. It is then discussed how to obtain an optimal on-line control policy for PN subject to an arbitrary GMEC. Next, we still consider the forbidden state problem but in PN vulnerable to SD-attacks. Assuming the control specification in terms of a GMEC, we propose three methods to derive on-line control policies. The first two lead to an optimal policy but are computationally inefficient for large-size systems, while the third method computes a policy with timely response even for large-size systems but at the expense of optimality. Finally, we investigate the liveness-enforcing problem still assuming that the system is vulnerable to SD-attacks. In this problem, the plant is modelled as a bounded PN, which allows us to off-line compute a supervisor starting from constructing the reachability graph of the PN. Then, based on repeatedly computing a more restrictive liveness-enforcing supervisor under no attack and constructing a basic supervisor, an off-line method that synthesizes a liveness-enforcing supervisor tolerant to an SD-attack is proposed. In the second topic, we care about the verification of properties related to system security. Two properties are considered, i.e., fault-predictability and event-based opacity. The former is a property in the literature, characterizing the situation that the occurrence of any fault in a system is predictable, while the latter is a newly proposed property in the thesis, which describes the fact that secret events of a system cannot be revealed to an external observer within their critical horizons. In the case of fault-predictability, DES are modeled by labeled PN. A necessary and sufficient condition for fault-predictability is derived by characterizing the structure of the Predictor Graph. Furthermore, two rules are proposed to reduce the size of a PN, which allow us to analyze the fault-predictability of the original net by verifying that of the reduced net. When studying event-based opacity, we use deterministic finite-state automata as the reference formalism. Considering different scenarios, we propose four notions, namely, K-observation event-opacity, infinite-observation event-opacity, event-opacity and combinational event-opacity. Moreover, verifiers are proposed to analyze these properties

    Basis marking representation of Petri net reachability spaces and its application to the reachability problem

    Get PDF
    In this paper a compact representation of the reachability graph of a Petri net is proposed. The transition set of a Petri net is partitioned into the subsets of explicit and implicit transitions, in such a way that the subnet induced by implicit transitions does not contain directed cycles. The firing of implicit transitions can be abstracted so that the reachability set of the net can be completely characterized by a subset of reachable markings called basis makings. We show that to determine a max-cardinality-T_I basis partition is an NPhard problem, but a max-set-T_I basis partition can be determined in polynomial time. The generalized version of the marking reachability problem in a Petri net can be solved by a practically efficient algorithm based on the basis reachability graph. Finally this approach is further extended to unbounded nets

    Identification of Stochastic Timed Discrete Event Systems with st-IPN

    Get PDF
    [EN] This paper presents amethod for the identification of stochastic timed discrete event systems, based on the analysis of the behavior of the input and output signals, arranged in a timeline. To achieve this goal stochastic timed interpreted Petri nets are defined.These nets link timed discrete event systems modelling with stochastic time modelling. The procedure starts with the observation of the input/output signals; these signals are converted into events, so that the sequence of events is the observed language. This language arrives to an identifier that builds a stochastic timed interpreted Petri net which generates the same language. The identified model is a deterministic generator of the observed language.The identification method also includes an algorithm that determines when the identification process is over.This work was supported by a Grant from the Universidad del Cauca, reference 2.3-31.2/05 2011.Muñoz-Añasco, DM.; Correcher Salvador, A.; García Moreno, E.; Morant Anglada, FJ. (2014). Identification of Stochastic Timed Discrete Event Systems with st-IPN. Mathematical Problems in Engineering. 2014:1-21. https://doi.org/10.1155/2014/835312S1212014Cassandras, C. G., & Lafortune, S. (Eds.). (2008). Introduction to Discrete Event Systems. doi:10.1007/978-0-387-68612-7Yingwei Zhang, Jiayu An, & Chi Ma. (2013). Fault Detection of Non-Gaussian Processes Based on Model Migration. IEEE Transactions on Control Systems Technology, 21(5), 1517-1526. doi:10.1109/tcst.2012.2217966Ichikawa, A., & Hiraishi, K. (s. f.). Analysis and control of discrete event systems represented by petri nets. Lecture Notes in Control and Information Sciences, 115-134. doi:10.1007/bfb0042308Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). Fault Detection by Labeled Petri Nets in Centralized and Distributed Approaches. IEEE Transactions on Automation Science and Engineering, 10(2), 392-404. doi:10.1109/tase.2012.2203596Cabasino, M. P., Giua, A., & Seatzu, C. (2010). Fault detection for discrete event systems using Petri nets with unobservable transitions. Automatica, 46(9), 1531-1539. doi:10.1016/j.automatica.2010.06.013Hu, H., Zhou, M., Li, Z., & Tang, Y. (2013). An Optimization Approach to Improved Petri Net Controller Design for Automated Manufacturing Systems. IEEE Transactions on Automation Science and Engineering, 10(3), 772-782. doi:10.1109/tase.2012.2201714Hu, H., Zhou, M., & Li, Z. (2011). Supervisor Optimization for Deadlock Resolution in Automated Manufacturing Systems With Petri Nets. IEEE Transactions on Automation Science and Engineering, 8(4), 794-804. doi:10.1109/tase.2011.2156783Hiraishi, K. (1992). Construction of a class of safe Petri nets by presenting firing sequences. Lecture Notes in Computer Science, 244-262. doi:10.1007/3-540-55676-1_14Estrada-Vargas, A. P., López-Mellado, E., & Lesage, J.-J. (2010). A Comparative Analysis of Recent Identification Approaches for Discrete-Event Systems. Mathematical Problems in Engineering, 2010, 1-21. doi:10.1155/2010/453254Shaolong Shu, & Feng Lin. (2013). I-Detectability of Discrete-Event Systems. IEEE Transactions on Automation Science and Engineering, 10(1), 187-196. doi:10.1109/tase.2012.2215959Li, L., & Hadjicostis, C. N. (2011). Least-Cost Transition Firing Sequence Estimation in Labeled Petri Nets With Unobservable Transitions. IEEE Transactions on Automation Science and Engineering, 8(2), 394-403. doi:10.1109/tase.2010.2070065Supavatanakul, P., Lunze, J., Puig, V., & Quevedo, J. (2006). Diagnosis of timed automata: Theory and application to the DAMADICS actuator benchmark problem. Control Engineering Practice, 14(6), 609-619. doi:10.1016/j.conengprac.2005.03.028Dotoli, M., Fanti, M. P., & Mangini, A. M. (2008). Real time identification of discrete event systems using Petri nets. Automatica, 44(5), 1209-1219. doi:10.1016/j.automatica.2007.10.014Chen, Y., Li, Z., Khalgui, M., & Mosbahi, O. (2011). Design of a Maximally Permissive Liveness- Enforcing Petri Net Supervisor for Flexible Manufacturing Systems. IEEE Transactions on Automation Science and Engineering, 8(2), 374-393. doi:10.1109/tase.2010.2060332Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Ramirez-Trevino, A., Ruiz-Beltran, E., Aramburo-Lizarraga, J., & Lopez-Mellado, E. (2012). Structural Diagnosability of DES and Design of Reduced Petri Net Diagnosers. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 42(2), 416-429. doi:10.1109/tsmca.2011.2169950Ramirez-Trevino, A., Ruiz-Beltran, E., Rivera-Rangel, I., & Lopez-Mellado, E. (2007). Online Fault Diagnosis of Discrete Event Systems. A Petri Net-Based Approach. IEEE Transactions on Automation Science and Engineering, 4(1), 31-39. doi:10.1109/tase.2006.872120Toutenburg, H. (1974). Fleiss, J. L.: Statistical Methods for Rates and Proportions. John Wiley & Sons, New York-London-Sydney-Toronto 1973. XIII, 233 S. Biometrische Zeitschrift, 16(8), 539-539. doi:10.1002/bimj.19740160814Livingston, E. H., & Cassidy, L. (2005). Statistical Power and Estimation of the Number of Required Subjects for a Study Based on the t-Test: A Surgeon’s Primer. Journal of Surgical Research, 126(2), 149-159. doi:10.1016/j.jss.2004.12.013Ruppert, D. (2011). Statistics and Data Analysis for Financial Engineering. Springer Texts in Statistics. doi:10.1007/978-1-4419-7787-

    On the cost of diagnosis with disambiguation

    Get PDF
    International audienceDiagnosis consists in deciding from a partial observation of a system whether a fault has occurred. A system is diagnosable if there exists a mechanism (a diagnoser) that accurately detects faults a finite number of steps after their occurrence. In a regular setting, a diagnoser builds an estimation of possible states of the system after an observation to decide if a fault has occurred. This paper addresses diagnosability (deciding whether a system is diagnosable) and its cost for safe Petri nets. We define an energy-like cost model for Petri nets: transitions can consume or restore energy of the system. We then give a partial order representation for state estimation, and extend the cost model and the capacities of diagnosers. Diagnosers are allowed to use additional energy to refine their estimations. Diagnosability is then seen as an energy game: checking whether disambiguation mechanisms are sufficient to allow diagnosability is in 2-EXPTIME, and one can also decide whether diagnosability under budget constraint holds in 2-EXPTIME

    Une approche efficace pour l’étude de la diagnosticabilité et le diagnostic des SED modélisés par Réseaux de Petri labellisés : contextes atemporel et temporel

    Get PDF
    This PhD thesis deals with fault diagnosis of discrete event systems using Petri net models. Some on-the-fly and incremental techniques are developed to reduce the state explosion problem while analyzing diagnosability. In the untimed context, an algebraic representation for labeled Petri nets (LPNs) is developed for featuring system behavior. The diagnosability of LPN models is tackled by analyzing a series of K-diagnosability problems. Two models called respectively FM-graph and FM-set tree are developed and built on the fly to record the necessary information for diagnosability analysis. Finally, a diagnoser is derived from the FM-set tree for online diagnosis. In the timed context, time interval splitting techniques are developed in order to make it possible to generate a state representation of labeled time Petri net (LTPN) models, for which techniques from the untimed context can be used to analyze diagnosability. Based on this, necessary and sufficient conditions for the diagnosability of LTPN models are determined. Moreover, we provide the solution for the minimum delay ∆ that ensures diagnosability. From a practical point of view, diagnosability analysis is performed on the basis of on-the-fly building of a structure that we call ASG and which holds fault information about the LTPN states. Generally, using on-the-fly analysis and incremental technique makes it possible to build and investigate only a part of the state space, even in the case when the system is diagnosable. Simulation results obtained on some chosen benchmarks show the efficiency in terms of time and memory compared with the traditional approaches using state enumerationCette thèse s'intéresse à l'étude des problèmes de diagnostic des fautes sur les systèmes à événements discrets en utilisant les modèles réseau de Petri. Des techniques d'exploration incrémentale et à-la-volée sont développées pour combattre le problème de l'explosion de l'état lors de l'analyse de la diagnosticabilité. Dans le contexte atemporel, la diagnosticabilité de modèles RdP-L est abordée par l'analyse d'une série de problèmes K-diagnosticabilité. L'analyse de la diagnosticabilité est effectuée sur la base de deux modèles nommés respectivement FM-graph et FM-set tree qui sont développés à-la-volée. Un diagnostiqueur peut être dérivé à partir du FM-set tree pour le diagnostic en ligne. Dans le contexte temporel, les techniques de fractionnement des intervalles de temps sont élaborées pour développer représentation de l'espace d'état des RdP-LT pour laquelle des techniques d'analyse de la diagnosticabilité peuvent être utilisées. Sur cette base, les conditions nécessaires et suffisantes pour la diagnosticabilité de RdP-LT ont été déterminées. En pratique, l'analyse de la diagnosticabilité est effectuée sur la base de la construction à-la-volée d'une structure nommée ASG et qui contient des informations relatives à l'occurrence de fautes. D'une manière générale, l'analyse effectuée sur la base des techniques à-la-volée et incrémentale permet de construire et explorer seulement une partie de l'espace d'état, même lorsque le système est diagnosticable. Les résultats des simulations effectuées sur certains benchmarks montrent l'efficacité de ces techniques en termes de temps et de mémoire par rapport aux approches traditionnelles basées sur l'énumération des état

    Fourier-Motzkin methods for fault diagnosis in discrete event systems

    Get PDF
    The problem of fault diagnosis under partial observation is a complex problem; and the challenge to solve this problem is to find a compromise between the space complexity and time complexity. The classic method to solve the problem is by constructing an automaton called a diagnoser. This method suffers from the state explosion problem which limits its application to large systems. In this thesis, the problem of fault diagnosis in partially observed discrete event systems is addressed. We assume that the system is modelled by Petri nets having no cycle of unobservable transitions. The class of labelled Petri nets is also considered with both bounded and unbounded cases. We propose a novel approach for fault diagnosis using the Integer Fourier-Motzkin Elimination method. The main idea is to reduce the problem of constructing the diagnoser to a problem of projecting between two spaces. In other words, we first obtain a set of inequalities derived from the state equation of Petri nets. Then, the elimination method is used to drop the variables corresponding to the unobservable transitions and we design two sets of inequalities in variables representing the observable transitions. One set ensures that the fault has occurred, whereas the other ensures that fault has not occurred. Given these two sets, we have proved that the occurrences of faults can be decided as any other diagnoser can do. The obtained result are extended to diagnose violations of constraints such as service level agreement and Quality of Service, which is of particular interested in telecommunication companies. We implement our approach and demonstrate gains in performance with respect to existing approaches on a benchmark example
    corecore