130 research outputs found

    On Incomplete Fuzzy and Multiplicative Preference Relations In Multi-Person Decision Making

    Get PDF
    This research work has been developed with the financing of FEDER funds in FUZZYLING-II Project TIN2010- 17876, the Andalusian Excellence Projects TIC-05299 and TIC-5991 and the mobility grant program awarded by the University of Granada ’s International Office.2nd International Conference on Information Technology and Quantitative Management, ITQM 2014Rapid changes in the business environment such us the globalization as well as the increasing necessity to make crucial decisions involving a huge range of alternatives in short period of time or even in real time have made that computerized group decision support systems become very useful tools. However in the majority of the cases the panel of experts cannot provide all the information about their preferences due to different reasons such as lack of knowledge, time etc. Therefore different approaches have been presented to deal with the missing preferences in group decision making contexts. In this paper we review and analyse the state-of-the-art research efforts carried out on this topic for incomplete fuzzy preference relations and multiplicative preference relations.FEDER funds in FUZZYLING-II Project TIN2010- 17876Andalusian Excellence Projects TIC-05299 and TIC-5991Mobility grant program awarded by the University of Granada ’s International Offic

    Approaches to improving consistency of interval fuzzy preference relations

    Get PDF
    This article introduces a consistency index for measuring the consistency level of an interval fuzzy preference relation (IFPR). An approach is then proposed to construct an additive consistent IFPR from a given inconsistent IFPR. By using a weighted averaging method combining the original IFPR and the constructed consistent IFPR, a formula is put forward to repair an inconsistent IFPR to generate an IFPR with acceptable consistency. An iterative algorithm is subsequently developed to rectify an inconsistent IFPR and derive one with acceptable consistency and weak transitivity. The proposed approaches can not only improve consistency of IFPRs but also preserve the initial interval uncertainty information as much as possible. Numerical examples are presented to illustrate how to apply the proposed approaches

    A Local Adjustment Method to Improve Multiplicative Consistency of Fuzzy Reciprocal Preference Relations

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Preferences that verify the transitivity property are usually referred to as rational or consistent preferences. Existent methods to improve the consistency of inconsistent fuzzy reciprocal preference relations (FPRs) fail to retain the original preference values because they always derive a new FPR. This article presents a new inconsistency identification and modification (IIM) method to detect and rectify only the most inconsistent elements of an inconsistent FPR. As such, the proposed IIM can be considered a local adjustment method to improve multiplicative consistency (MC) of FPRs. The case of inconsistent FPRs with missing values, i.e., incomplete FPRs, is addressed with the estimation of the missing preferences with a constrained nonlinear optimization model by the application of the IIM method. The implementation process of the proposed algorithms is illustrated with numerical examples. Simulation experiments and comparisons with existent methods are also included to show that the new method requires fewer iterations than existent methods to improve the MC of FPRs and achieves better MC level, while preserving the original preference information as much as possible than the existent methods. Thus, the results presented in this article demonstrate the correctness, effectiveness, and robustness of the proposed method

    Consistency test and weight generation for additive interval fuzzy preference relations

    Get PDF
    Some simple yet pragmatic methods of consistency test are developed to check whether an interval fuzzy preference relation is consistent. Based on the definition of additive consistent fuzzy preference relations proposed by Tanino (Fuzzy Sets Syst 12:117–131, 1984), a study is carried out to examine the correspondence between the element and weight vector of a fuzzy preference relation. Then, a revised approach is proposed to obtain priority weights from a fuzzy preference relation. A revised definition is put forward for additive consistent interval fuzzy preference relations. Subsequently, linear programming models are established to generate interval priority weights for additive interval fuzzy preference relations. A practical procedure is proposed to solve group decision problems with additive interval fuzzy preference relations. Theoretic analysis and numerical examples demonstrate that the proposed methods are more accurate than those in Xu and Chen (Eur J Oper Res 184:266–280, 2008b)

    Repairing the Inconsistent Fuzzy Preference Matrix Using Multiobjective PSO

    Get PDF
    This paper presents a method using multiobjective particle swarm optimization (PSO) approach to improve the consistency matrix in analytic hierarchy process (AHP), called PSOMOF. The purpose of this method is to optimize two objectives which conflict each other, while improving the consistency matrix. They are minimizing consistent ratio (CR) and deviation matrix. This study focuses on fuzzy preference matrix as one model comparison matrix in AHP. Some inconsistent matrices are repaired successfully to be consistent by this method. This proposed method offers some alternative consistent matrices as solutions

    Distance-based consensus models for fuzzy and multiplicative 3 preference relations

    Get PDF
    This paper proposes a distance-based consensus model for fuzzy preference relations where the weights of fuzzy preference relations are automatically determined. Two indices, an individual to group consensus index (ICI) and a group consensus index (GCI), are introduced. An iterative consensus reaching algorithm is presented and the process terminates until both the ICI and GCI are controlled within predefined thresholds. The model and algorithm are then extended to handle multiplicative preference relations. Finally, two examples are illustrated and comparative analyses demonstrate the effectiveness of the proposed methods
    • …
    corecore