6,696 research outputs found

    Abraham Wald

    Get PDF
    This paper grew out of a lecture presented at the 54th Session of the International Statistical Institute in Berlin, August 13 - 20, 2003, Schneeweiss (2003). It intends not only to outline the eventful life of Abraham Wald (1902 - 1950) in Austria and in the United States but also to present his extensive scientific work. In particular, the two main subjects, where he earned most of his fame, are outline: Statistical Decision Theory and Sequential Analysis. In addition, emphasis is laid on his contributions to Econometrics and related fields

    Asymptotic Bayes-optimality under sparsity of some multiple testing procedures

    Full text link
    Within a Bayesian decision theoretic framework we investigate some asymptotic optimality properties of a large class of multiple testing rules. A parametric setup is considered, in which observations come from a normal scale mixture model and the total loss is assumed to be the sum of losses for individual tests. Our model can be used for testing point null hypotheses, as well as to distinguish large signals from a multitude of very small effects. A rule is defined to be asymptotically Bayes optimal under sparsity (ABOS), if within our chosen asymptotic framework the ratio of its Bayes risk and that of the Bayes oracle (a rule which minimizes the Bayes risk) converges to one. Our main interest is in the asymptotic scheme where the proportion p of "true" alternatives converges to zero. We fully characterize the class of fixed threshold multiple testing rules which are ABOS, and hence derive conditions for the asymptotic optimality of rules controlling the Bayesian False Discovery Rate (BFDR). We finally provide conditions under which the popular Benjamini-Hochberg (BH) and Bonferroni procedures are ABOS and show that for a wide class of sparsity levels, the threshold of the former can be approximated by a nonrandom threshold.Comment: Published in at http://dx.doi.org/10.1214/10-AOS869 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Subtree power analysis finds optimal species for comparative genomics

    Get PDF
    Sequence comparison across multiple organisms aids in the detection of regions under selection. However, resource limitations require a prioritization of genomes to be sequenced. This prioritization should be grounded in two considerations: the lineal scope encompassing the biological phenomena of interest, and the optimal species within that scope for detecting functional elements. We introduce a statistical framework for optimal species subset selection, based on maximizing power to detect conserved sites. In a study of vertebrate species, we show that the optimal species subset is not in general the most evolutionarily diverged subset. Our results suggest that marsupials are prime sequencing candidates.Comment: 16 pages, 3 figures, 3 table
    corecore