44,822 research outputs found

    On Feature-Based SAR Image Registration: Appropriate Feature and Retrieval Algorithm

    Get PDF
    An investigation on the appropriate feature and parameter retrieval algorithm is conducted for feature-based registration of synthetic aperture radar (SAR) images. The commonly used features such as tie points, Harris corner, SIFT, and SURF are comprehensively evaluated. SURF is shown to outperform others on criteria such as the geometrical invariance of feature and descriptor, the extraction and matching speed, the localization accuracy, as well as the robustness to decorrelation and speckling. The processing result reveals that SURF has nice flexibility to SAR speckles for the potential relationship between Fast-Hessian detector and refined Lee filter. Moreover, the use of Fast-Hessian to oversampled images with unaltered sampling step helps to improve the registration accuracy to subpixel (i.e., <1 pixel). As for parameter retrieval, the widely used random sample consensus (RANSAC) is inappropriate because it may trap into local occlusion and result in uncertain estimation. An extended fast least trimmed squares (EF-LTS) is proposed, which behaves stable and averagely better than RANSAC. Fitting SURF features with EF-LTS is hence suggested for SAR image registration. The nice performance of this scheme is validated on both InSAR and MiniSAR image pairs

    MapSnapper: Engineering an Efficient Algorithm for Matching Images of Maps from Mobile Phones

    No full text
    The MapSnapper project aimed to develop a system for robust matching of low-quality images of a paper map taken from a mobile phone against a high quality digital raster representation of the same map. The paper presents a novel methodology for performing content-based image retrieval and object recognition from query images that have been degraded by noise and subjected to transformations through the imaging system. In addition the paper also provides an insight into the evaluation-driven development process that was used to incrementally improve the matching performance until the design specifications were met

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    A survey of outlier detection methodologies

    Get PDF
    Outlier detection has been used for centuries to detect and, where appropriate, remove anomalous observations from data. Outliers arise due to mechanical faults, changes in system behaviour, fraudulent behaviour, human error, instrument error or simply through natural deviations in populations. Their detection can identify system faults and fraud before they escalate with potentially catastrophic consequences. It can identify errors and remove their contaminating effect on the data set and as such to purify the data for processing. The original outlier detection methods were arbitrary but now, principled and systematic techniques are used, drawn from the full gamut of Computer Science and Statistics. In this paper, we introduce a survey of contemporary techniques for outlier detection. We identify their respective motivations and distinguish their advantages and disadvantages in a comparative review
    • …
    corecore