54 research outputs found

    A 32 mV/69 mV input voltage booster based on a piezoelectric transformer for energy harvesting applications

    Get PDF
    This paper presents a novel method for battery-less circuit start-up from ultra-low voltage energy harvesting sources. The approach proposes for the first time the use of a Piezoelectric Transformer (PT) as the key component of a step-up oscillator. The proposed oscillator circuit is first modelled from a theoretical point of view and then validated experimentally with a commercial PT. The minimum achieved start-up voltage is about 69 mV, with no need for any external magnetic component. Hence, the presented system is compatible with the typical output voltages of thermoelectric generators (TEGs). Oscillation is achieved through a positive feedback coupling the PT with an inverter stage made up of JFETs. All the used components are in perspective compatible with microelectronic and MEMS technologies. In addition, in case the use of a ∼40 μH inductor is acceptable, the minimum start-up voltage becomes as low as about 32 mV

    Fast-waking and low-voltage thermoelectric and photovoltaic CMOS chargers for energy-harvesting wireless microsensors

    Get PDF
    The small size of wireless microsystems allows them to be deployed within larger systems to sense and monitor various indicators throughout many applications. However, their small size restricts the amount of energy that can be stored in the system. Current microscale battery technologies do not store enough energy to power the microsystems for more than a few months without recharging. Harvesting ambient energy to replenish the on-board battery extend the lifetime of the microsystem. Although light and thermal energy are more practical in some applications than other forms of ambient energy, they nevertheless suffer from long energy droughts. Additionally, due to the very limited space available in the microsystem, the system cannot store enough energy to continue operation throughout these energy droughts. Therefore, the microsystem must reliably wake from these energy droughts, even if the on-board battery has been depleted. The challenge here is waking a microsystem directly from an ambient source transducer whose voltage and power levels are limited due to their small size. Starter circuits must be used to ensure the system wakes regardless of the state of charge of the energy storage device. The purpose of the presented research is to develop, design, simulate, fabricate, test and evaluate CMOS integrated circuits that can reliably wake from no energy conditions and quickly recharge a depleted battery. Since the battery is depleted during startup, the system must use the low voltage produced by the energy harvesting transducer to transfer energy. The presented system has the fastest normalized wake time while reusing the inductor already present in the battery charger for startup, therefore, minimizing the overall footprint of the system.Ph.D

    Design Space Evaluation for Resonant and Hard-charged Switched Capacitor Converters

    Get PDF
    USB Power Delivery enables a fixed ratio converter to operate over a wider range of output voltages by varying the input voltage. Of the DC/DC step-down converters powered from this type of USB, the hard-charged Switched Capacitor circuit is of interest to industry for its potential high power density. However implementation can be limited by circuit efficiency. In fully resonant mode, the efficiency can be improved while also enabling current regulation. This expands the possible applications into battery chargers and eliminates the need for a two-stage converter.In this work, the trade-off in power loss and area between the hard-charged and fully resonant switched capacitor circuit is explored using a technique that remains agnostic to inductor technology. The loss model for each converter is presented as well as discussion on the restrained design space due to parasitics in the passive components. The results are validated experimentally using GaN-based prototype converters and the respective design spaces are analyzed

    Low-profile antenna systems for the Next-Generation Internet of Things applications

    Get PDF

    ULTRA LOW POWER FSK RECEIVER AND RF ENERGY HARVESTER

    Get PDF
    This thesis focuses on low power receiver design and energy harvesting techniques as methods for intelligently managing energy usage and energy sources. The goal is to build an inexhaustibly powered communication system that can be widely applied, such as through wireless sensor networks (WSNs). Low power circuit design and smart power management are techniques that are often used to extend the lifetime of such mobile devices. Both methods are utilized here to optimize power usage and sources. RF energy is a promising ambient energy source that is widely available in urban areas and which we investigate in detail. A harvester circuit is modeled and analyzed in detail at low power input. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology improves RF to DC energy conversion efficiency. The strategy of co-design of the antenna and the harvester creates opportunities to optimize the system power conversion efficiency. Previous surveys have found that ambient RF energy is spread broadly over the frequency domain; however, here it is demonstrated that it is theoretically impossible to harvest RF energy over a wide frequency band if the ambient RF energy source(s) are weak, owing to the voltage requirements. It is found that most of the ambient RF energy lies in a series of narrow bands. Two different versions of harvesters have been designed, fabricated, and tested. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (900MHz and 1800MHz) at an input power as low as -19dBm. The DC output voltage of this harvester is over 1V, which can be used to recharge the battery to form an inexhaustibly powered communication system. A new phase locked loop based receiver architecture is developed to avoid the significant conversion losses associated with OOK architectures. This also helps to minimize power consumption. A new low power mixer circuit has also been designed, and a detailed analysis is provided. Based on the mixer, a low power phase locked loop (PLL) based receiver has been designed, fabricated and measured. A power management circuit and a low power transceiver system have also been co-designed to provide a system on chip solution. The low power voltage regulator is designed to handle a variety of battery voltage, environmental temperature, and load conditions. The whole system can work with a battery and an application specific integrated circuit (ASIC) as a sensor node of a WSN network

    Energy Harvesting for Tire Pressure Monitoring Systems

    Get PDF
    Tire pressure monitoring systems (TPMSs) predict over- and underinflated tires, and warn the driver in critical situations. Today, battery powered TPMSs suffer from limited energy. New sensor features such as friction determination or aquaplaning detection require even more energy and would significantly decrease the TPMS lifetime. Harvesting electrical energy inside the tire of a vehicle has been considered as a promising alternative to overcome the limited lifetime of a battery. However, it is a real challenge to design a system, that generates electrical energy at low velocities while being robust at 200 km/h where radial accelerations up to 20000 m/s2 occur. This work focusses on developing different electromechanical energy transducers that meet the high requirements of the automotive sector. Different approaches are addressed on how the change of acceleration and strain within the tire can be used to provide mechanical energy to the energy harvester. The energy harvester converts the mechanical energy into electrical energy. In this thesis, piezoelectric and electromagnetic transducers are discussed in depth, modelled as electromechanical networks. Since the transducers provide energy in the form of an AC voltage, but sensors require a DC voltage, various common interface circuits are compared, using LTspice and applying method of the stochastic signal analysis. Furthermore, a buck-boost converter concept for the electromagnetic energy harvester is optimized and improved. Experiments on a tire test rig validate the theoretically determined output and confirm that well designed energy harvesters in the tire can generate much more energy than required by an TPMS not only at high velocities but also at velocities as low as 20 km/h

    A Smart Implantable Bone Fixation Plate Providing Actuation and Load Monitoring for Orthopedic Fracture Healing

    Get PDF
    Fracture non-union occurs in roughly 5-10% of all fracture cases, and current interventions are both time-consuming and costly. There is therefore significant incentive to develop new tools to improve fracture healing outcomes. Several studies have shown that low-magnitude, high-frequency (LMHF) mechanical loading can promote faster healing and reduce the risk of refracture in critical-size long bone fractures. This is typically done using whole-body vibration, which may result in undesirable systemic effects on the rest of the body. This work discusses an implantable piezoelectric fixation plate that can both apply LMHF loading directly to the fracture site using flexible scheduling and indirectly monitor the progress of healing by using the increasing stiffness of the fracture callus. The design and performance of the piezoelectric bone plate show that the device can apply the target treatment and has the sensitivity to be used to observe the progress of healing. An accompanying telemetry system using BLE communication is also introduced which has a footprint of suitable size to be used in rodent studies and can provide the power necessary for piezoelectric actuation. These results pave the way for future studies regarding the efficacy and optimization of LMHF treatments in fracture healing models

    Acoustic Power Transfer Leveraging Piezoelectricity and Metamaterials

    Get PDF
    Acoustic power transfer, or ultrasonic power transfer (UPT) more specifically, has received growing attention as a viable approach for wireless power delivery to low-power electronic devices. It has found applications in powering biomedical implants, sensors in sealed metallic enclosures, and sensors deep in the ocean. The design of an efficient UPT system requires coupled multiphysics modeling to establish strategies toward maximizing the transferred power. This work, first, investigates different analytical and numerical models to analyze the performance of UPT systems to increase the transferred power. Various electromechanical models are developed to represent the transducer (transmitter or receiver) and overall system dynamics for a broad range of aspect ratios covering the diverse UPT applications. The main challenges that limit UPT system efficiency such as attenuation, power divergence, and reflection due to impedance mismatch issues are investigated using the developed models. These effects are investigated at the system level with an application to transfer power through metallic barriers using bonded piezoelectric disc transducers. A complete system for transferring power from the battery of a transmitter to the DC load of a receiver is designed and simulated, then experimentally tested. The experimental results of the system agree well with the modeling predictions, and the system can deliver 17.5 W to a DC load with a total DC-to-DC efficiency of 66 %. A second system with a portable and detachable dry-coupled transmitter is also experimentally tested. The dry-coupled system can deliver 3 W of DC power with 50 % efficiency from a 9V battery. Novel approaches using acoustic metamaterials/phononic crystals are introduced to enhance the efficiency of UPT through wave focusing. Specifically, two 3D phononic crystal structures based on air in a 3D-printed polymer matrix are introduced to manipulate acoustic waves both under water and in air. Two designs for gradient-index lenses are fabricated and experimentally characterized to focus acoustic waves on a piezoelectric receiver, thereby dramatically enhancing the power output. Finally, acoustic and electrical impedance matching are investigated for sending both power and data using ultrasonic waves. Several impedance matching techniques are proposed to maximize transducer bandwidth, power efficiency, as well as sensitivity for underwater data transfer. A novel approach is introduced for achieving simultaneous power and data transfer using frequency multiplexing with a single transducer. The introduced designs allow for configurable matching for maximizing power efficiency, maximizing data transfer, or simultaneously sending power to the transducer while receiving data with lower bandwidth.Ph.D

    Circuits and Systems for Energy Harvesting and Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) continues its growing trend, while new “smart” objects are con-stantly being developed and commercialized in the market. Under this paradigm, every common object will be soon connected to the Internet: mobile and wearable devices, electric appliances, home electronics and even cars will have Internet connectivity. Not only that, but a variety of wireless sensors are being proposed for different consumer and industrial applications. With the possibility of having hundreds of billions of IoT objects deployed all around us in the coming years, the social implications and the economic impact of IoT technology needs to be seriously considered. There are still many challenges, however, awaiting a solution in order to realize this future vision of a connected world. A very important bottleneck is the limited lifetime of battery powered wireless devices. Fully depleted batteries need to be replaced, which in perspective would generate costly maintenance requirements and environmental pollution. However, a very plausible solution to this dilemma can be found in harvesting energy from the ambient. This dissertation focuses in the design of circuits and system for energy harvesting and Internet of Things applications. The first part of this dissertation introduces the research motivation and fundamentals of energy harvesting and power management units (PMUs). The architecture of IoT sensor nodes and PMUs is examined to observe the limitations of modern energy harvesting systems. Moreover, several architectures for multisource harvesting are reviewed, providing a background for the research presented here. Then, a new fully integrated system architecture for multisource energy harvesting is presented. The design methodology, implementation, trade-offs and measurement results of the proposed system are described. The second part of this dissertation focus on the design and implementation of low-power wireless sensor nodes for precision agriculture. First, a sensor node incorporating solar energy harvesting and a dynamic power management strategy is presented. The operation of a wireless sensor network for soil parameter estimation, consisting of four nodes is demonstrated. After that, a solar thermoelectric generator (STEG) prototype for powering a wireless sensor node is proposed. The implemented solar thermoelectric generator demonstrates to be an alternative way to harvest ambient energy, opening the possibility for its use in agricultural and environmental applications. The open problems in energy harvesting for IoT devices are discussed at the end, to delineate the possible future work to improve the performance of EH systems. For all the presented works, proof-of-concept prototypes were fabricated and tested. The measured results are used to verify their correct operation and performance
    corecore