608 research outputs found

    Least Generalizations and Greatest Specializations of Sets of Clauses

    Get PDF
    The main operations in Inductive Logic Programming (ILP) are generalization and specialization, which only make sense in a generality order. In ILP, the three most important generality orders are subsumption, implication and implication relative to background knowledge. The two languages used most often are languages of clauses and languages of only Horn clauses. This gives a total of six different ordered languages. In this paper, we give a systematic treatment of the existence or non-existence of least generalizations and greatest specializations of finite sets of clauses in each of these six ordered sets. We survey results already obtained by others and also contribute some answers of our own. Our main new results are, firstly, the existence of a computable least generalization under implication of every finite set of clauses containing at least one non-tautologous function-free clause (among other, not necessarily function-free clauses). Secondly, we show that such a least generalization need not exist under relative implication, not even if both the set that is to be generalized and the background knowledge are function-free. Thirdly, we give a complete discussion of existence and non-existence of greatest specializations in each of the six ordered languages.Comment: See http://www.jair.org/ for any accompanying file

    A Transformation-based Implementation for CLP with Qualification and Proximity

    Get PDF
    Uncertainty in logic programming has been widely investigated in the last decades, leading to multiple extensions of the classical LP paradigm. However, few of these are designed as extensions of the well-established and powerful CLP scheme for Constraint Logic Programming. In a previous work we have proposed the SQCLP (proximity-based qualified constraint logic programming) scheme as a quite expressive extension of CLP with support for qualification values and proximity relations as generalizations of uncertainty values and similarity relations, respectively. In this paper we provide a transformation technique for transforming SQCLP programs and goals into semantically equivalent CLP programs and goals, and a practical Prolog-based implementation of some particularly useful instances of the SQCLP scheme. We also illustrate, by showing some simple-and working-examples, how the prototype can be effectively used as a tool for solving problems where qualification values and proximity relations play a key role. Intended use of SQCLP includes flexible information retrieval applications.Comment: 49 pages, 5 figures, 1 table, preliminary version of an article of the same title, published as Technical Report SIC-4-10, Universidad Complutense, Departamento de Sistemas Inform\'aticos y Computaci\'on, Madrid, Spai

    Inductive Logic Programming in Databases: from Datalog to DL+log

    Full text link
    In this paper we address an issue that has been brought to the attention of the database community with the advent of the Semantic Web, i.e. the issue of how ontologies (and semantics conveyed by them) can help solving typical database problems, through a better understanding of KR aspects related to databases. In particular, we investigate this issue from the ILP perspective by considering two database problems, (i) the definition of views and (ii) the definition of constraints, for a database whose schema is represented also by means of an ontology. Both can be reformulated as ILP problems and can benefit from the expressive and deductive power of the KR framework DL+log. We illustrate the application scenarios by means of examples. Keywords: Inductive Logic Programming, Relational Databases, Ontologies, Description Logics, Hybrid Knowledge Representation and Reasoning Systems. Note: To appear in Theory and Practice of Logic Programming (TPLP).Comment: 30 pages, 3 figures, 2 tables

    Anti-Unification of Unordered Goals

    Get PDF
    Anti-unification in logic programming refers to the process of capturing common syntactic structure among given goals, computing a single new goal that is more general called a generalization of the given goals. Finding an arbitrary common generalization for two goals is trivial, but looking for those common generalizations that are either as large as possible (called largest common generalizations) or as specific as possible (called most specific generalizations) is a non-trivial optimization problem, in particular when goals are considered to be unordered sets of atoms. In this work we provide an in-depth study of the problem by defining two different generalization relations. We formulate a characterization of what constitutes a most specific generalization in both settings. While these generalizations can be computed in polynomial time, we show that when the number of variables in the generalization needs to be minimized, the problem becomes NP-hard. We subsequently revisit an abstraction of the largest common generalization when anti-unification is based on injective variable renamings, and prove that it can be computed in polynomially bounded time

    Classification and representation of types in TDL

    Get PDF
    TDL is a typed feature-based representation language and inference system, specifically designed to support highly lexicalized constraint-based grammar theories. Type definitions in TDL consist of type and feature constraints over the full Boolean connectives together with coreferences, thus making TDL Turing-complete. TDL provides open- and closed-world reasoning over types. Working with partially as well as with fully expanded types is possible. Efficient reasoning in TDL is accomplished through specialized modules. In this paper, we will highlight the type/inheritance hierarchy module of TDL and show how we represent conjunctively and disjunctively defined types. Negated types and incompatible types are handled by specialized bottom symbols. Redefining a type only leads to the redefinition of the dependent types, and not to the redefinition of the whole grammar/lexicon. Undefined types are nothing special. Reasoning over the type hierarchy is partially realized by a bit vector encoding of types, similar to the one used in Aït-Kaci\u27s LOGIN. However, the underlying semantics does not harmonize with the open-world assumption of TDL. Thus, we have to generalize the GLB/LUB operation to account for this fact. The system, as presented in the paper, has been fully implemented in Common Lisp and is an integrated part of a large NL system. It has been installed and successfully employed at other sites and runs on various platforms

    A workbench to develop ILP systems

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201
    • …
    corecore