658 research outputs found

    Learnt Topology Gating Artificial Neural Networks

    Get PDF
    This work combines several established regression and meta-learning techniques to give a holistic regression model and presents the proposed Learnt Topology Gating Artificial Neural Networks (LTGANN) model in the context of a general architecture previously published by the authors. The applied regression techniques are Artificial Neural Networks, which are on one hand used as local experts for the regression modelling and on the other hand as gating networks. The role of the gating networks is to estimate the prediction error of the local experts dependent on the input data samples. This is achieved by relating the input data space to the performance of the local experts, and thus building a performance map, for each of the local experts. The estimation of the prediction error is then used for the weighting of the local experts predictions. Another advantage of our approach is that the particular neural networks are unconstrained in terms of the number of hidden units. It is only necessary to define the range within which the number of hidden units has to be generated. The model links the topology to the performance, which has been achieved by the network with the given complexity, using a probabilistic approach. As the model was developed in the context of process industry data, it is evaluated using two industrial data sets. The evaluation has shown a clear advantage when using a model combination and meta-learning approach as well as demonstrating the higher performance of LTGANN when compared to a standard combination method

    Gating Artificial Neural Network Based Soft Sensor

    Get PDF
    This work proposes a novel approach to Soft Sensor modelling, where the Soft Sensor is built by a set of experts which are artificial neural networks with randomly generated topology. For each of the experts a meta neural network is trained, the gating Artificial Neural Network. The role of the gating network is to learn the performance of the experts in dependency on the input data samples. The final prediction of the Soft Sensor is a weighted sum of the individual experts predictions. The proposed meta-learning method is evaluated on two different process industry data sets

    Optimisation for Optical Data Centre Switching and Networking with Artificial Intelligence

    Get PDF
    Cloud and cluster computing platforms have become standard across almost every domain of business, and their scale quickly approaches O(106)\mathbf{O}(10^6) servers in a single warehouse. However, the tier-based opto-electronically packet switched network infrastructure that is standard across these systems gives way to several scalability bottlenecks including resource fragmentation and high energy requirements. Experimental results show that optical circuit switched networks pose a promising alternative that could avoid these. However, optimality challenges are encountered at realistic commercial scales. Where exhaustive optimisation techniques are not applicable for problems at the scale of Cloud-scale computer networks, and expert-designed heuristics are performance-limited and typically biased in their design, artificial intelligence can discover more scalable and better performing optimisation strategies. This thesis demonstrates these benefits through experimental and theoretical work spanning all of component, system and commercial optimisation problems which stand in the way of practical Cloud-scale computer network systems. Firstly, optical components are optimised to gate in 500ps\approx 500 ps and are demonstrated in a proof-of-concept switching architecture for optical data centres with better wavelength and component scalability than previous demonstrations. Secondly, network-aware resource allocation schemes for optically composable data centres are learnt end-to-end with deep reinforcement learning and graph neural networks, where 3×3\times less networking resources are required to achieve the same resource efficiency compared to conventional methods. Finally, a deep reinforcement learning based method for optimising PID-control parameters is presented which generates tailored parameters for unseen devices in O(103)s\mathbf{O}(10^{-3}) s. This method is demonstrated on a market leading optical switching product based on piezoelectric actuation, where switching speed is improved >20%>20\% with no compromise to optical loss and the manufacturing yield of actuators is improved. This method was licensed to and integrated within the manufacturing pipeline of this company. As such, crucial public and private infrastructure utilising these products will benefit from this work

    Metalearning: a survey of trends and technologies

    Get PDF
    Metalearning attracted considerable interest in the machine learning community in the last years. Yet, some disagreement remains on what does or what does not constitute a metalearning problem and in which contexts the term is used in. This survey aims at giving an all-encompassing overview of the research directions pursued under the umbrella of metalearning, reconciling different definitions given in scientific literature, listing the choices involved when designing a metalearning system and identifying some of the future research challenges in this domain. © 2013 The Author(s)
    corecore