246 research outputs found

    A statistical method for retrospective cardiac and respiratory motion gating of interventional cardiac x-ray images

    Get PDF
    Purpose: Image-guided cardiac interventions involve the use of fluoroscopic images to guide the insertion and movement of interventional devices. Cardiorespiratory gating can be useful for 3D reconstruction from multiple x-ray views and for reducing misalignments between 3D anatomical models overlaid onto fluoroscopy. Methods: The authors propose a novel and potentially clinically useful retrospective cardiorespiratory gating technique. The principal component analysis (PCA) statistical method is used in combination with other image processing operations to make our proposed masked-PCA technique suitable for cardiorespiratory gating. Unlike many previously proposed techniques, our technique is robust to varying image-content, thus it does not require specific catheters or any other optically opaque structures to be visible. Therefore, it works without any knowledge of catheter geometry. The authors demonstrate the application of our technique for the purposes of retrospective cardiorespiratory gating of normal and very low dose x-ray fluoroscopy images. Results: For normal dose x-ray images, the algorithm was validated using 28 clinical electrophysiology x-ray fluoroscopy sequences (2168 frames), from patients who underwent radiofrequency ablation (RFA) procedures for the treatment of atrial fibrillation and cardiac resynchronization therapy procedures for heart failure. The authors established end-systole, end-expiration, and end-inspiration success rates of 97.0%, 97.9%, and 97.0%, respectively. For very low dose applications, the technique was tested on ten x-ray sequences from the RFA procedures with added noise at signal to noise ratio (SNR) values of √50, √10, √8, √6, √5, √2 and √1 to simulate the image quality of increasingly lower dose x-ray images. Even at the low SNR value of √2, representing a dose reduction of more than 25 times, gating success rates of 89.1%, 88.8%, and 86.8% were established. Conclusions: The proposed technique can therefore extract useful information from interventional x-ray images while minimizing exposure to ionizing radiation. © 2014 American Association of Physicists in Medicine

    End-to-End Real-time Catheter Segmentation with Optical Flow-Guided Warping during Endovascular Intervention

    Get PDF
    Accurate real-time catheter segmentation is an important pre-requisite for robot-assisted endovascular intervention. Most of the existing learning-based methods for catheter segmentation and tracking are only trained on small-scale datasets or synthetic data due to the difficulties of ground-truth annotation. Furthermore, the temporal continuity in intraoperative imaging sequences is not fully utilised. In this paper, we present FW-Net, an end-to-end and real-time deep learning framework for endovascular intervention. The proposed FW-Net has three modules: a segmentation network with encoder-decoder architecture, a flow network to extract optical flow information, and a novel flow-guided warping function to learn the frame-to-frame temporal continuity. We show that by effectively learning temporal continuity, the network can successfully segment and track the catheters in real-time sequences using only raw ground-truth for training. Detailed validation results confirm that our FW-Net outperforms state-of-the-art techniques while achieving real-time performance.Comment: ICRA 202

    A novel real-time computational framework for detecting catheters and rigid guidewires in cardiac catheterization procedures

    Get PDF
    Purpose: Catheters and guidewires are used extensively in cardiac catheterization procedures such as heart arrhythmia treatment (ablation), angioplasty and congenital heart disease treatment. Detecting their positions in fluoroscopic X-ray images is important for several clinical applications, for example, motion compensation, co-registration between 2D and 3D imaging modalities and 3D object reconstruction. Methods: For the generalized framework, a multiscale vessel enhancement filter is first used to enhance the visibility of wire-like structures in the X-ray images. After applying adaptive binarization method, the centerlines of wire-like objects were extracted. Finally, the catheters and guidewires were detected as a smooth path which is reconstructed from centerlines of target wire-like objects. In order to classify electrode catheters which are mainly used in electrophysiology procedures, additional steps were proposed. First, a blob detection method, which is embedded in vessel enhancement filter with no additional computational cost, localizes electrode positions on catheters. Then the type of electrode catheters can be recognized by detecting the number of electrodes and also the shape created by a series of electrodes. Furthermore, for detecting guiding catheters or guidewires, a localized machine learning algorithm is added into the framework to distinguish between target wire objects and other wire-like artifacts. The proposed framework were tested on total 10,624 images which are from 102 image sequences acquired from 63 clinical cases. Results: Detection errors for the coronary sinus (CS) catheter, lasso catheter ring and lasso catheter body are 0.56 ± 0.28 mm, 0.64 ± 0.36 mm and 0.66 ± 0.32 mm, respectively, as well as success rates of 91.4%, 86.3% and 84.8% were achieved. Detection errors for guidewires and guiding catheters are 0.62 ± 0.48 mm and success rates are 83.5%. Conclusion: The proposed computational framework do not require any user interaction or prior models and it can detect multiple catheters or guidewires simultaneously and in real-time. The accuracy of the proposed framework is sub-mm and the methods are robust toward low-dose X-ray fluoroscopic images, which are mainly used during procedures to maintain low radiation dose

    Fusion of interventional ultrasound & X-ray

    Get PDF
    In einer immer Ă€lter werdenden Bevölkerung wird die Behandlung von strukturellen Herzkrankheiten zunehmend wichtiger. Verbesserte medizinische Bildgebung und die EinfĂŒhrung neuer Kathetertechnologien fĂŒhrten dazu, dass immer mehr herkömmliche chirurgische Eingriffe am offenen Herzen durch minimal invasive Methoden abgelöst werden. Diese modernen Interventionen mĂŒssen durch verschiedenste Bildgebungsverfahren navigiert werden. Hierzu werden hauptsĂ€chlich Röntgenfluoroskopie und transösophageale Echokardiografie (TEE) eingesetzt. Röntgen bietet eine gute Visualisierung der eingefĂŒhrten Katheter, was essentiell fĂŒr eine gute Navigation ist. TEE hingegen bietet die Möglichkeit der Weichteilgewebedarstellung und kann damit vor allem zur Darstellung von anatomischen Strukturen, wie z.B. Herzklappen, genutzt werden. Beide ModalitĂ€ten erzeugen Bilder in Echtzeit und werden fĂŒr die erfolgreiche DurchfĂŒhrung minimal invasiver Herzchirurgie zwingend benötigt. Üblicherweise sind beide Systeme eigenstĂ€ndig und nicht miteinander verbunden. Es ist anzunehmen, dass eine Bildfusion beider Welten einen großen Vorteil fĂŒr die behandelnden Operateure erzeugen kann, vor allem eine verbesserte Kommunikation im Behandlungsteam. Ebenso können sich aus der Anwendung heraus neue chirurgische Worfklows ergeben. Eine direkte Fusion beider Systeme scheint nicht möglich, da die Bilddaten eine zu unterschiedliche Charakteristik aufweisen. Daher kommt in dieser Arbeit eine indirekte Registriermethode zum Einsatz. Die TEE-Sonde ist wĂ€hrend der Intervention stĂ€ndig im Fluoroskopiebild sichtbar. Dadurch wird es möglich, die Sonde im Röntgenbild zu registrieren und daraus die 3D Position abzuleiten. Der Zusammenhang zwischen Ultraschallbild und Ultraschallsonde wird durch eine Kalibrierung bestimmt. In dieser Arbeit wurde die Methode der 2D-3D Registrierung gewĂ€hlt, um die TEE Sonde auf 2D Röntgenbildern zu erkennen. Es werden verschiedene BeitrĂ€ge prĂ€sentiert, welche einen herkömmlichen 2D-3D Registrieralgorithmus verbessern. Nicht nur im Bereich der Ultraschall-Röntgen-Fusion, sondern auch im Hinblick auf allgemeine Registrierprobleme. Eine eingefĂŒhrte Methode ist die der planaren Parameter. Diese verbessert die Robustheit und die Registriergeschwindigkeit, vor allem wĂ€hrend der Registrierung eines Objekts aus zwei nicht-orthogonalen Richtungen. Ein weiterer Ansatz ist der Austausch der herkömmlichen Erzeugung von sogenannten digital reconstructed radiographs. Diese sind zwar ein integraler Bestandteil einer 2D-3D Registrierung aber gleichzeitig sehr zeitaufwendig zu berechnen. Es fĂŒhrt zu einem erheblichen Geschwindigkeitsgewinn die herkömmliche Methode durch schnelles Rendering von Dreiecksnetzen zu ersetzen. Ebenso wird gezeigt, dass eine Kombination von schnellen lernbasierten Detektionsalgorithmen und 2D-3D Registrierung die Genauigkeit und die Registrierreichweite verbessert. Zum Abschluss werden die ersten Ergebnisse eines klinischen Prototypen prĂ€sentiert, welcher die zuvor genannten Methoden verwendet.Today, in an elderly community, the treatment of structural heart disease will become more and more important. Constant improvements of medical imaging technologies and the introduction of new catheter devices caused the trend to replace conventional open heart surgery by minimal invasive interventions. These advanced interventions need to be guided by different medical imaging modalities. The two main imaging systems here are X-ray fluoroscopy and Transesophageal  Echocardiography (TEE). While X-ray provides a good visualization of inserted catheters, which is essential for catheter navigation, TEE can display soft tissues, especially anatomical structures like heart valves. Both modalities provide real-time imaging and are necessary to lead minimal invasive heart surgery to success. Usually, the two systems are detached and not connected. It is conceivable that a fusion of both worlds can create a strong benefit for the physicians. It can lead to a better communication within the clinical team and can probably enable new surgical workflows. Because of the completely different characteristics of the image data, a direct fusion seems to be impossible. Therefore, an indirect registration of Ultrasound and X-ray images is used. The TEE probe is usually visible in the X-ray image during the described minimal-invasive interventions. Thereby, it becomes possible to register the TEE probe in the fluoroscopic images and to establish its 3D position. The relationship of the Ultrasound image to the Ultrasound probe is known by calibration. To register the TEE probe on 2D X-ray images, a 2D-3D registration approach is chosen in this thesis. Several contributions are presented, which are improving the common 2D-3D registration algorithm for the task of Ultrasound and X-ray fusion, but also for general 2D-3D registration problems. One presented approach is the introduction of planar parameters that increase robustness and speed during the registration of an object on two non-orthogonal views. Another approach is to replace the conventional generation of digital reconstructedradiographs, which is an integral part of 2D-3D registration but also a performance bottleneck, with fast triangular mesh rendering. This will result in a significant performance speed-up. It is also shown that a combination of fast learning-based detection algorithms with 2D-3D registration will increase the accuracy and the capture range, instead of employing them solely to the  registration/detection of a TEE probe. Finally, a first clinical prototype is presented which employs the presented approaches and first clinical results are shown

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Augmented Image-Guidance for Transcatheter Aortic Valve Implantation

    Get PDF
    The introduction of transcatheter aortic valve implantation (TAVI), an innovative stent-based technique for delivery of a bioprosthetic valve, has resulted in a paradigm shift in treatment options for elderly patients with aortic stenosis. While there have been major advancements in valve design and access routes, TAVI still relies largely on single-plane fluoroscopy for intraoperative navigation and guidance, which provides only gross imaging of anatomical structures. Inadequate imaging leading to suboptimal valve positioning contributes to many of the early complications experienced by TAVI patients, including valve embolism, coronary ostia obstruction, paravalvular leak, heart block, and secondary nephrotoxicity from contrast use. A potential method of providing improved image-guidance for TAVI is to combine the information derived from intra-operative fluoroscopy and TEE with pre-operative CT data. This would allow the 3D anatomy of the aortic root to be visualized along with real-time information about valve and prosthesis motion. The combined information can be visualized as a `merged\u27 image where the different imaging modalities are overlaid upon each other, or as an `augmented\u27 image, where the location of key target features identified on one image are displayed on a different imaging modality. This research develops image registration techniques to bring fluoroscopy, TEE, and CT models into a common coordinate frame with an image processing workflow that is compatible with the TAVI procedure. The techniques are designed to be fast enough to allow for real-time image fusion and visualization during the procedure, with an intra-procedural set-up requiring only a few minutes. TEE to fluoroscopy registration was achieved using a single-perspective TEE probe pose estimation technique. The alignment of CT and TEE images was achieved using custom-designed algorithms to extract aortic root contours from XPlane TEE images, and matching the shape of these contours to a CT-derived surface model. Registration accuracy was assessed on porcine and human images by identifying targets (such as guidewires or coronary ostia) on the different imaging modalities and measuring the correspondence of these targets after registration. The merged images demonstrated good visual alignment of aortic root structures, and quantitative assessment measured an accuracy of less than 1.5mm error for TEE-fluoroscopy registration and less than 6mm error for CT-TEE registration. These results suggest that the image processing techniques presented have potential for development into a clinical tool to guide TAVI. Such a tool could potentially reduce TAVI complications, reducing morbidity and mortality and allowing for a safer procedure

    Constrained Stochastic State Estimation of Deformable 1D Objects: Application to Single-view 3D Reconstruction of Catheters with Radio-opaque Markers

    Get PDF
    International audienceMinimally invasive fluoroscopy-based procedures are the gold standard for diagnosis and treatment of various pathologies of the cardiovascular system. This kind of procedures imply for the clinicians to infer the 3D shape of the device from 2D images, which is known to be an ill-posed 10 problem. In this paper we present a method to reconstruct the 3D shape of the interventional device, with the aim of improving the navigation. The method combines a physics-based simulation with non-linear Bayesian filter. Whereas the physics-based model provides a prediction of the shape of the device navigating within the blood vessels (taking into account non-linear interactions be-15 tween the catheter and the surrounding anatomy), an Unscented Kalman Filter is used to correct the navigation model using 2D image features as external observations. The proposed framework has been evaluated on both synthetic and real data, under different model parameterizations, filter parameters tuning and external observations data-sets. Comparing the reconstructed 3D shape with a known ground truth, for the synthetic data-set, we obtained average values for 3D Hausdorff Distance of 0.81±0.53mm0.81 ± 0.53 mm, for the 3D mean distance at the segment of 0.37±0.170.37 ± 0.17 mm and an average 3D tip error of 0.24±0.13mm0.24 ± 0.13 mm. For the real data-set,we obtained an average 3D Hausdorff distance of 1.74±0.77mm1.74 ± 0.77 mm, a average 3D mean distance at the distal segment of 0.91 ± 0.14 mm, an average 3D error on the tip of 0.53±0.09mm0.53 ± 0.09 mm. These results show the ability of our method to retrieve the 3D shape of the device, under a variety of filter parameterizations and challenging conditions: uncertainties on model parameterization, ambiguous views and non-linear complex phenomena such as stick and slip motions

    A Survey on the Current Status and Future Challenges Towards Objective Skills Assessment in Endovascular Surgery

    Get PDF
    Minimally-invasive endovascular interventions have evolved rapidly over the past decade, facilitated by breakthroughs in medical imaging and sensing, instrumentation and most recently robotics. Catheter based operations are potentially safer and applicable to a wider patient population due to the reduced comorbidity. As a result endovascular surgery has become the preferred treatment option for conditions previously treated with open surgery and as such the number of patients undergoing endovascular interventions is increasing every year. This fact coupled with a proclivity for reduced working hours, results in a requirement for efficient training and assessment of new surgeons, that deviates from the “see one, do one, teach one” model introduced by William Halsted, so that trainees obtain operational expertise in a shorter period. Developing more objective assessment tools based on quantitative metrics is now a recognised need in interventional training and this manuscript reports the current literature for endovascular skills assessment and the associated emerging technologies. A systematic search was performed on PubMed (MEDLINE), Google Scholar, IEEXplore and known journals using the keywords, “endovascular surgery”, “surgical skills”, “endovascular skills”, “surgical training endovascular” and “catheter skills”. Focusing explicitly on endovascular surgical skills, we group related works into three categories based on the metrics used; structured scales and checklists, simulation-based and motion-based metrics. This review highlights the key findings in each category and also provides suggestions for new research opportunities towards fully objective and automated surgical assessment solutions
    • 

    corecore