20,606 research outputs found

    A Hierarchical Framework of Cloud Resource Allocation and Power Management Using Deep Reinforcement Learning

    Full text link
    Automatic decision-making approaches, such as reinforcement learning (RL), have been applied to (partially) solve the resource allocation problem adaptively in the cloud computing system. However, a complete cloud resource allocation framework exhibits high dimensions in state and action spaces, which prohibit the usefulness of traditional RL techniques. In addition, high power consumption has become one of the critical concerns in design and control of cloud computing systems, which degrades system reliability and increases cooling cost. An effective dynamic power management (DPM) policy should minimize power consumption while maintaining performance degradation within an acceptable level. Thus, a joint virtual machine (VM) resource allocation and power management framework is critical to the overall cloud computing system. Moreover, novel solution framework is necessary to address the even higher dimensions in state and action spaces. In this paper, we propose a novel hierarchical framework for solving the overall resource allocation and power management problem in cloud computing systems. The proposed hierarchical framework comprises a global tier for VM resource allocation to the servers and a local tier for distributed power management of local servers. The emerging deep reinforcement learning (DRL) technique, which can deal with complicated control problems with large state space, is adopted to solve the global tier problem. Furthermore, an autoencoder and a novel weight sharing structure are adopted to handle the high-dimensional state space and accelerate the convergence speed. On the other hand, the local tier of distributed server power managements comprises an LSTM based workload predictor and a model-free RL based power manager, operating in a distributed manner.Comment: accepted by 37th IEEE International Conference on Distributed Computing (ICDCS 2017

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Investigation of LSTM Based Prediction for Dynamic Energy Management in Chip Multiprocessors

    Get PDF
    In this paper, we investigate the effectiveness of using long short-term memory (LSTM) instead of Kalman filtering to do prediction for the purpose of constructing dynamic energy management (DEM) algorithms in chip multi-processors (CMPs). Either of the two prediction methods is employed to estimate the workload in the next control period for each of the processor cores. These estimates are then used to select voltage-frequency (VF) pairs for each core of the CMP during the next control period as part of a dynamic voltage and frequency scaling (DVFS) technique. The objective of the DVFS technique is to reduce energy consumption under performance constraints that are set by the user. We conduct our investigation using a custom Sniper system simulation framework. Simulation results for 16 and 64 core network-on-chip based CMP architectures and using several benchmarks demonstrate that the LSTM is slightly better than Kalman filtering

    Bayesian learning of models for estimating uncertainty in alert systems: application to air traffic conflict avoidance

    Get PDF
    Alert systems detect critical events which can happen in the short term. Uncertainties in data and in the models used for detection cause alert errors. In the case of air traffic control systems such as Short-Term Conflict Alert (STCA), uncertainty increases errors in alerts of separation loss. Statistical methods that are based on analytical assumptions can provide biased estimates of uncertainties. More accurate analysis can be achieved by using Bayesian Model Averaging, which provides estimates of the posterior probability distribution of a prediction. We propose a new approach to estimate the prediction uncertainty, which is based on observations that the uncertainty can be quantified by variance of predicted outcomes. In our approach, predictions for which variances of posterior probabilities are above a given threshold are assigned to be uncertain. To verify our approach we calculate a probability of alert based on the extrapolation of closest point of approach. Using Heathrow airport flight data we found that alerts are often generated under different conditions, variations in which lead to alert detection errors. Achieving 82.1% accuracy of modelling the STCA system, which is a necessary condition for evaluating the uncertainty in prediction, we found that the proposed method is capable of reducing the uncertain component. Comparison with a bootstrap aggregation method has demonstrated a significant reduction of uncertainty in predictions. Realistic estimates of uncertainties will open up new approaches to improving the performance of alert systems

    A Very Brief Introduction to Machine Learning With Applications to Communication Systems

    Get PDF
    Given the unprecedented availability of data and computing resources, there is widespread renewed interest in applying data-driven machine learning methods to problems for which the development of conventional engineering solutions is challenged by modelling or algorithmic deficiencies. This tutorial-style paper starts by addressing the questions of why and when such techniques can be useful. It then provides a high-level introduction to the basics of supervised and unsupervised learning. For both supervised and unsupervised learning, exemplifying applications to communication networks are discussed by distinguishing tasks carried out at the edge and at the cloud segments of the network at different layers of the protocol stack
    corecore