207 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    High Performance Communication Framework for Mobile Sinks Wireless Sensor Networks

    Get PDF
    A wireless sensor networks typically consist of thousand of nodes and each node has limited power, processing and bandwidth resources. Harvesting advances in the past decade in microelectronics, sensing, wireless communications and networking, sensor networks technology is expected to have a significant impact on our lives in the twenty-first century. Proposed applications of sensor networks include environmental monitoring, natural disaster prediction and relief, homeland security, healthcare, manufacturing, transportation, and home appliances and entertainment. However, Communication is one of the major challenges in wireless sensor networks as it is the main source for energy depletion. Improved network lifetime is a fundamental challenge of wireless sensor networks. Many researchers have proposed using mobile sinks as one possible solution to improve the lifetime of wireless sensor networks. The reason is that the typical manyto- one communication traffic pattern in wireless sensor networks imposes a heavy forwarding load on the nodes close to the sinks. However, it also introduces many research challenges such as the high communication overhead for updating the dynamic routing paths to connect to mobile sinks and packet loss problems while transmitted messages to mobile sinks. Therefore, our goal is to design a robust and efficient routing framework for both non-geographic aware and geographic aware mobile sinks wireless sensor networks. In order to achieve this goal in non-geographic based mobile sinks wireless sensor networks, we proposed a spider-net zone routing protocol to improve network efficiency and lifetime. Our proposed routing protocol utilise spider web topology inspired by the way spiders hunt prey in their web to provide reliable and high performance data delivery to mobile sinks. For routing in geographic aware based mobile sinks wireless sensor networks, we proposed a fault-tolerant magnetic coordinate routing algorithm to allow these network sensors to take advantage of geographic knowledge to build a routing protocol. Our proposed routing algorithm incorporates a coordinated routing algorithm for grid based network topology to improve network performance. Our third contribution is a component level fault diagnosis scheme for wireless sensor networks. The advantage of this scheme, causal model fault diagnosis, is that it can "deeply understand" and express the relationship among failure behaviours and node system components through causal relations. The above contributions constitute a novel routing framework to address the routing challenges in mobile sinks wireless sensor networks, Our framework considers both geographic and non-geographic aware based sensor networks to achieve energy efficient, high performance and network reliability. We have analyzed the proposed protocols and schemes and evaluated their performances using analytical study and simulations. The evaluation was based on the most important metries in wireless sensor networks, such as: power consumption and average delay. The evaluation shows that our solution is more energy efficient, improves the network performance, and provides data reliability in mobile sinks wireless sensor networks

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Distributed Range-Free Localization of Wireless Sensor Networks via Nonlinear Dynamics

    Get PDF

    Protecting Contextual Information in WSNs: Source- and Receiver-Location Privacy Solutions

    Get PDF
    La privacidad es un derecho fundamental recogido por numerosas leyes y tratados entre los que destaca la Declaración Universal de los Derechos Humanos de las Naciones Unidas. Sin embargo, este derecho fundamental se ha visto vulnerado en numerosas ocasiones a lo largo de la historia; y el desarrollo de la tecnología, en especial la mejora de los sistemas de recolección, analisis y diseminación de información, han tenido gran parte de culpa. En la actualidad nos encontramos en un punto en el que el desarrollo y despliegue de sistemas ubicuos, encabezados por las redes inalámbricas de sensores, puede llegar a suponer un riesgo de privacidad sin precedentes dada su capacidad para recolectar información en cantidades y situaciones hasta el momento insospechadas. Existe, por tanto, una urgente necesidad de desarrollar mecanismos capaces de velar por nuestra información más sensible. Es precisamente éste uno de los objetivos principales de la presente tesis doctoral: facilitar la integración de las redes inalámbricas de sensores en nuestro día a día sin que éstas supongan un grave riesgo de privacidad. Esta tesis se centra en un problema de privacidad particular que viene derivado de la naturaleza inalámbrica de las comunicaciones y de la necesidad imperiosa de ahorrar energía que existe en estas redes de recursos restringidos. Para las redes de sensores, las comunicaciones suponen un gran porcentaje del presupuesto energético y, por ello, los protocolos de encaminamiento empleados tienden a minimizarlas, utilizando protocolos de camino óptimo. Aprovechándose de esta situación, un observador podría, mediante técnicas de análisis de tráfico no demasiado sofisticadas, y sin necesidad de descifrar el contenido de los paquete, determinar el origen y el destino de las comunicaciones. Esto supone, al igual que en los sistemas de comunicación tradicionales, un grave riesgo para la privacidad. Dado que el problema de la privacidad de localización en redes de sensores se reduce a una cuestión de análisis de tráfico, parece razonable pensar que las soluciones desarrolladas a tal fin en redes de computadores pueden ser de utilida. Sin embargo, esta hipótesis ha sido rechazada en varias ocasiones con argumentos vagos al respecto de las limitaciones computacionales y energéticas de las redes de sensores. Nosotros consideramos que esto no es motivo suficiente para descartar estas soluciones ya que, a pesar de la tendencia actual, en el futuro podríamos tener nodos sensores de gran capacidad. Por ello, uno de los objetivos de esta tesis ha sido realizar un análisis exhaustivo sobre la aplicabilidad de estas soluciones al ámbito de las redes de sensores, centrándonos no sólo en los requisitos computacionales sino también en las propiedades de anonimato que se persiguen, en los modelos de atacante y en las posibles limitaciones que podrían derivarse de su aplicación. Por otra parte, se ha realizado un amplio análisis de las soluciones de privacidad de localización existentes para redes de sensores. Este análisis no se ha centrado únicamente en estudiar las técnicas de protección de empleadas sino que además se ha esforzado en destacar las ventajas e inconvenientes de las distintas soluciones. Esto ha permitido desarrollar una completa taxonomía en varios niveles basada en los recursos que se desean proteger, los modelos de adversario a los que hacer frente y las principales características o técnicas empleadas por las diferentes soluciones. Además, a partir de esto se han detectado una serie de problemas abiertos y puntos de mejora del estado del arte actual, que se han plasmado en dos nuevas soluciones; una de las soluciones se ha centrado en la protección de la localización del origen de datos, mientras que la otra se ha enfocado a la protección de la estación base. Ambas soluciones tienen en cuenta atacantes con un rango de escucha parcial y capaces de desplazarse en el terreno para observar las comunicaciones en diferentes zonas de la red. La primera de las soluciones desarrolladas parte de la observación de que los mecanismos actuales se basan principalmente en el envío de paquetes siguiendo caminos aleatorios sin ningún conocimiento acerca de si estos caminos son realmente efectivos para hacer frente a un atacante local. La idea detrás de CALP es aprovechar la capacidad que tienen las redes de sensores para sentir lo que pasa en su entorno para desarrollar mecanismos de protección más inteligentes utilizando información acerca del atacante. De esta forma, se consigue reducir drásticamente el consumo energético de la solución y al mismo tiempo se reduce el retraso de las comunicaciones, ya que el mecanismo sólo se activa ante la presencia de un atacante. Aunque esta idea se ha aplicado únicamente a la protección de los nodos origen de datos, sus características indican que también sería posible aplicarla con éxito a la protección de la estación base. La segunda solución surge tras observar que las soluciones para proteger la estación base son demasiado costosas a nivel energético o, en su defecto, revelan información sobre su localización. Además, hasta la fecha ninguna solución había tenido en cuenta que si un atacante obtiene las tablas de rutas de un nodo obtiene información sobre la estación base. Nuestra solución, HISP-NC, se basa en dos mecanismos complementarios que, por un lado, hacen frente a ataques de análisis de tráfico y, por otro lado, protegen frente al nuevo modelo de atacante desarrollado. El primer mecanismo se basa en la homogeneización del tráfico en el entorno del camino y el segundo en la perturbación de la tabla de rutas, de manera que se dificulta el ataque al tiempo que se asegura la llegada de datos a la estación base

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application
    • …
    corecore