523 research outputs found

    Disassembly sequence generation in recycling based on parts accessibility and end-of-life strategy

    Get PDF
    Nowadays, global sustainability is the central issue in recycling and, increasingly, in manufacturing. Recycling used products can save energy, natural resources, and landfill space, and can reduce air pollution. It can give used products new lives. The study of disassembly is needed in order to make recycling economical, and disassembly sequence generation (DSG) plays an important role. An appropriate disassembly process plan can minimize the cost spent on the disassembly processes and maximize the benefits coming from the reused components. In the current paper, a new approach using Petri net modelling to generate an optimal disassembly sequence (ODS), based on accessibility and end-of-life (EOL) strategy, is described. The different life spans of the reusable components affect the disassembly order, especially in destructive disassembly, and the influence of components with different life spans on DSG is analysed. First, AND/OR graphs are used to generate all feasible disassembly sequences, and then AND/OR graphs are transferred into Petri net graphs while accessibility values and life span values of components are taken into account to obtain the ODS. A program using Microsoft Cþþ is developed to generate the ODS. The disassembly of a C-clamp is used as a trial example

    Disassembly Planning and Costing Through Petri Net Approach

    Get PDF
    In the current consumer oriented environment, many new products appear in the market almost on a daily basis. Lured by advertisements and tempted by new product features, customers are constantly purchasing newer products. Acquiring newer products for often leads to throwing out older ones, but it is a totally different story for manufacturers. They need to consider the best way to reuse a product both for economic purposes and for environmental protection. Considerations for them often include: how to minimize total disassembly cost, how to achieve the lowest total disassembly time at each processing step, and how to sort valuable parts from hazardous parts as early as possible during the disassembly procedure. In this paper, we use a Disassembly Petri-Net (DPN) to generate the Disassembly Process Plan (DPP). This plan is a sequence of disassembly tasks from the initial stage of the whole product to the final stage where each part is separated from the other parts. This disassembly plan is very valuable for product recycling or remanufacturing. Prior to having the DPN, we apply an algorithm to generate a Disassembly Precedence Matrix (DPM) helped by the construction steps involved in SolidWorks™, a solid model software used to create the part in the first place. From the DPN, we find all feasible paths and generate the corresponding costs of disassembly based upon tool changes, changes in direction of the movement and individual part characteristics (e.g. hazardous components and recycle component). Cost data was extracted from previously published studies by Boothroyd et al. to obtain the handling time and disassembly time. Afterwards, we developed the optimal or near-optimal DPP for the best time and cost based disassembly options. In summary, this paper presents a systematic method to disassemble a part into its individual components and provides a cost figure for doing so. This is in contrast with many studies reported in the literature in that they concentrate either on a measure of disassembly complexity, or even if cost is presumably the driving force, their costs are arbitrary costs based on pre-selected values for such things as tool change penalty, disassembly direction change penalty or penalty for delaying removal of hazardous materials. In this paper, we are using disassembly times based on experimental work and/or industrial experience. Given the correct labor rate, our cost evaluation indeed yields a realistic cost value

    Optimal and intelligent decision making in sustainable development of electronic products

    Get PDF
    Increasing global population and consumption are causing declining natural and social systems. Multi-lifecycle engineering and sustainable development address these issues by integrating strategies for economic successes, environmental quality, and social equity. Based on multi-lifecycle engineering and sustainable development concepts, this doctoral dissertation aims to provide decision making approaches to growing a strong industrial economy while maintaining a clean, healthy environment. The research develops a methodology to complete both the disassembly leveling and bin assignment decisions in demanufacturing through balancing the disassembly efforts, value returns, and environmental impacts. The proposed method is successfully implemented into a demanufacturing module of a Multi-LifeCycle Assessment and Analysis tool. The methodology is illustrated by a computer product example. Since products during the use stage may experience very different conditions, their external and internal status can vary significantly. These products, when coming to a demanufacturing facility, are often associated with incomplete/imprecise information, which complicates demanufacturing process decision making. In order to deal with uncertain information, this research proposes Fuzzy Reasoning Petri nets to model and reason knowledge-based systems and successfully applies them to demanufacturing process decision making to obtain the maximal End-of-Life (BOL) value from discarded products. Besides the BOL management of products by means of product/material recovery to decrease environmental impacts, the concepts of design for environment and sustainable development are investigated. Based on Sustainability Target Method, a sensitivity analysis decision-making method is proposed. It provides a company with suggestions to improve its product\u27s sustainability in the most cost-effective manner

    Modeling, design and scheduling of computer integrated manufacturing and demanufacturing systems

    Get PDF
    This doctoral dissertation work aims to provide a discrete-event system-based methodology for design, implementation, and operation of flexible and agile manufacturing and demanufacturing systems. After a review of the current academic and industrial activities in these fields, a Virtual Production Lines (VPLs) design methodology is proposed to facilitate a Manufacturing Execution System integrated with a shop floor system. A case study on a back-end semiconductor line is performed to demonstrate that the proposed methodology is effective to increase system throughput and decrease tardiness. An adaptive algorithm is proposed to deal with the machine failure and maintenance. To minimize the environmental impacts caused by end-of-life or faulty products, this research addresses the fundamental design and implementation issues of an integrated flexible demanufacturing system (IFDS). In virtue of the success of the VPL design and differences between disassembly and assembly, a systematic approach is developed for disassembly line design. This thesis presents a novel disassembly planning and demanufacturing scheduling method for such a system. Case studies on the disassembly of personal computers are performed illustrating how the proposed approaches work

    Immersive Computing Technology to Investigate Tradeoffs Under Uncertainty in Disassembly Sequence Planning

    Get PDF
    The scientific and industrial communities have begun investigating the possibility of making product recovery economically viable. Disassembly sequence planning may be used to make end-of-life product take-back processes more cost effective. Much of the research involving disassembly sequence planning relies on mathematical optimization models. These models often require input data that is unavailable or can only be approximated with high uncertainty. In addition, there are few mathematical models that include consideration of the potential of product damage during disassembly operations. The emergence of Immersive Computing Technologies (ICT) enables designers to evaluate products without the need for physical prototypes. Utilizing unique 3D user interfaces, designers can investigate a multitude of potential disassembly operations without resorting to disassembly of actual products. The information obtained through immersive simulation can be used to determine the optimum disassembly sequence. The aim of this work is to apply a decision analytical approach in combination with immersive computing technology to optimize the disassembly sequence while considering trade-offs between two conflicting attributes: disassembly cost and damage estimation during disassembly operations. A wooden Burr puzzle is used as an example product test case. Immersive human computer interaction is used to determine input values for key variables in the mathematical model. The results demonstrate that the use of dynamic programming algorithms coupled with virtual disassembly simulation is an effective method for evaluating multiple attributes in disassembly sequence planning. This paper presents a decision analytical approach, combined with immersive computing techniques, to optimize the disassembly sequence. Future work will concentrate on creating better methods of estimating damage in virtual disassembly environments and using the immersive technology to further explore the feasible design space

    Task planning with uncertainty for robotic systems

    Get PDF
    In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated

    Quality embedded intelligent remanufacturing

    Get PDF
    This thesis is motivated from the four keywords: remanufacturing, quality, multi-agent and intelligence. Recent years' environmental problems caused tightening the regulations and legislations for used products. Therefore remanufacturing is getting more attention. The quality of used products is uncertain and even dynamically changes during the remanufacturing process, and each used product should be individually handled in a different way depending on its quality. Fortunately recent developing wireless technologies like radio frequency identification (RFID) may enable remanufacturing control systems to identify, track, and control each used product and disassembled subassembly/part (PDSP) automatically. The multi-agent approach can be a good solution for the individual control of each PDSP, because a centralized control system is not eligible to managing so many elements in the remanufacturing system. The objective of this thesis is to propose a quality embedded remanufacturing system (QRS) which comprises a multi-agent framework and a scheduling mechanism. First, this thesis discusses the fundamental concepts for the proposed modeling tools and scheduling mechanism: the QRS quality characteristics and the multi-agent framework. As the second step, this thesis proposes QRS modeling tools which support the PDSP/resource quality representation and comprise: intuitive remanufacturing system representation (IRSR) and dynamic token two-level colored Petri-nets (DTPN). The former is designed from the user-side perspective and the latter is from the system-side perspective. The multi-agent framework is constructed based on the model represented with the proposed tools. Last, this thesis proposes a real-time scheduling mechanism for the QRS which enables the constructed framework to execute. The scheduling mechanism embeds a communication protocol among agents and dispatching rules formulated depending on the PDSP/resource quality. A knowledge-based approach is adopted to increase efficiency of the scheduling mechanism, where the knowledge is learned by simulations. A heuristic method is also proposed to reduce the simulation time
    • …
    corecore