4,677 research outputs found

    Fast Sequence Component Analysis for Attack Detection in Synchrophasor Networks

    Get PDF
    Modern power systems have begun integrating synchrophasor technologies into part of daily operations. Given the amount of solutions offered and the maturity rate of application development it is not a matter of "if" but a matter of "when" in regards to these technologies becoming ubiquitous in control centers around the world. While the benefits are numerous, the functionality of operator-level applications can easily be nullified by injection of deceptive data signals disguised as genuine measurements. Such deceptive action is a common precursor to nefarious, often malicious activity. A correlation coefficient characterization and machine learning methodology are proposed to detect and identify injection of spoofed data signals. The proposed method utilizes statistical relationships intrinsic to power system parameters, which are quantified and presented. Several spoofing schemes have been developed to qualitatively and quantitatively demonstrate detection capabilities.Comment: 8 pages, 4 figures, submitted to IEEE Transaction

    Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

    Full text link
    Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available

    Cybersecurity Strategy against Cyber Attacks towards Smart Grids with PVs

    Get PDF
    Cyber attacks threaten the security of distribution power grids, such as smart grids. The emerging renewable energy sources such as photovoltaics (PVs) with power electronics controllers introduce new potential vulnerabilities. Based on the electric waveform data measured by waveform sensors in the smart grids, we propose a novel cyber attack detection and identification approach. Firstly, we analyze the cyber attack impacts (including cyber attacks on the solar inverter causing unusual harmonics) on electric waveforms in distribution power grids. Then, we propose a novel deep learning based mechanism including attack detection and attack diagnosis. By leveraging the electric waveform sensor data structure, our approach does not need the training stage for both detection and the root cause diagnosis, which is needed for machine learning/deep learning-based methods. For comparison, we have evaluated classic data-driven methods, including -nearest neighbor (KNN), decision tree (DT), support vector machine (SVM), artificial neural network (ANN), and convolutional neural network (CNN). Comparison results verify the performance of the proposed method for detection and diagnosis of various cyber attacks on PV systems

    Time is of the Essence: Machine Learning-based Intrusion Detection in Industrial Time Series Data

    Full text link
    The Industrial Internet of Things drastically increases connectivity of devices in industrial applications. In addition to the benefits in efficiency, scalability and ease of use, this creates novel attack surfaces. Historically, industrial networks and protocols do not contain means of security, such as authentication and encryption, that are made necessary by this development. Thus, industrial IT-security is needed. In this work, emulated industrial network data is transformed into a time series and analysed with three different algorithms. The data contains labeled attacks, so the performance can be evaluated. Matrix Profiles perform well with almost no parameterisation needed. Seasonal Autoregressive Integrated Moving Average performs well in the presence of noise, requiring parameterisation effort. Long Short Term Memory-based neural networks perform mediocre while requiring a high training- and parameterisation effort.Comment: Extended version of a publication in the 2018 IEEE International Conference on Data Mining Workshops (ICDMW
    • …
    corecore