3,667 research outputs found

    United we fall, divided we stand: A study of query segmentation and PRF for patent prior art search

    Get PDF
    Previous research in patent search has shown that reducing queries by extracting a few key terms is ineffective primarily because of the vocabulary mismatch between patent applications used as queries and existing patent documents. This ļ¬nding has led to the use of full patent applications as queries in patent prior art search. In addition, standard information retrieval (IR) techniques such as query expansion (QE) do not work effectively with patent queries, principally because of the presence of noise terms in the massive queries. In this study, we take a new approach to QE for patent search. Text segmentation is used to decompose a patent query into selfcoherent sub-topic blocks. Each of these much shorted sub-topic blocks which is representative of a speciļ¬c aspect or facet of the invention, is then used as a query to retrieve documents. Documents retrieved using the different resulting sub-queries or query streams are interleaved to construct a ļ¬nal ranked list. This technique can exploit the potential beneļ¬t of QE since the segmented queries are generally more focused and less ambiguous than the full patent query. Experiments on the CLEF-2010 IP prior-art search task show that the proposed method outperforms the retrieval effectiveness achieved when using a single full patent application text as the query, and also demonstrates the potential beneļ¬ts of QE to alleviate the vocabulary mismatch problem in patent search

    Reply With: Proactive Recommendation of Email Attachments

    Full text link
    Email responses often contain items-such as a file or a hyperlink to an external document-that are attached to or included inline in the body of the message. Analysis of an enterprise email corpus reveals that 35% of the time when users include these items as part of their response, the attachable item is already present in their inbox or sent folder. A modern email client can proactively retrieve relevant attachable items from the user's past emails based on the context of the current conversation, and recommend them for inclusion, to reduce the time and effort involved in composing the response. In this paper, we propose a weakly supervised learning framework for recommending attachable items to the user. As email search systems are commonly available, we constrain the recommendation task to formulating effective search queries from the context of the conversations. The query is submitted to an existing IR system to retrieve relevant items for attachment. We also present a novel strategy for generating labels from an email corpus---without the need for manual annotations---that can be used to train and evaluate the query formulation model. In addition, we describe a deep convolutional neural network that demonstrates satisfactory performance on this query formulation task when evaluated on the publicly available Avocado dataset and a proprietary dataset of internal emails obtained through an employee participation program.Comment: CIKM2017. Proceedings of the 26th ACM International Conference on Information and Knowledge Management. 201

    Multiple Retrieval Models and Regression Models for Prior Art Search

    Get PDF
    This paper presents the system called PATATRAS (PATent and Article Tracking, Retrieval and AnalysiS) realized for the IP track of CLEF 2009. Our approach presents three main characteristics: 1. The usage of multiple retrieval models (KL, Okapi) and term index definitions (lemma, phrase, concept) for the three languages considered in the present track (English, French, German) producing ten different sets of ranked results. 2. The merging of the different results based on multiple regression models using an additional validation set created from the patent collection. 3. The exploitation of patent metadata and of the citation structures for creating restricted initial working sets of patents and for producing a final re-ranking regression model. As we exploit specific metadata of the patent documents and the citation relations only at the creation of initial working sets and during the final post ranking step, our architecture remains generic and easy to extend

    Query refinement for patent prior art search

    Get PDF
    A patent is a contract between the inventor and the state, granting a limited time period to the inventor to exploit his invention. In exchange, the inventor must put a detailed description of his invention in the public domain. Patents can encourage innovation and economic growth but at the time of economic crisis patents can hamper such growth. The long duration of the application process is a big obstacle that needs to be addressed to maximize the benefit of patents on innovation and economy. This time can be significantly improved by changing the way we search the patent and non-patent literature.Despite the recent advancement of general information retrieval and the revolution of Web Search engines, there is still a huge gap between the emerging technologies from the research labs and adapted by major Internet search engines, and the systems which are in use by the patent search communities.In this thesis we investigate the problem of patent prior art search in patent retrieval with the goal of finding documents which describe the idea of a query patent. A query patent is a full patent application composed of hundreds of terms which does not represent a single focused information need. Other relevance evidences (e.g. classification tags, and bibliographical data) provide additional details about the underlying information need of the query patent. The first goal of this thesis is to estimate a uni-gram query model from the textual fields of a query patent. We then improve the initial query representation using noun phrases extracted from the query patent. We show that expansion in a query-dependent manner is useful.The second contribution of this thesis is to address the term mismatch problem from a query formulation point of view by integrating multiple relevance evidences associated with the query patent. To do this, we enhance the initial representation of the query with the term distribution of the community of inventors related to the topic of the query patent. We then build a lexicon using classification tags and show that query expansion using this lexicon and considering proximity information (between query and expansion terms) can improve the retrieval performance. We perform an empirical evaluation of our proposed models on two patent datasets. The experimental results show that our proposed models can achieve significantly better results than the baseline and other enhanced models

    Task-based user profiling for query refinement (toque)

    Get PDF
    The information needs of search engine users vary in complexity. Some simple needs can be satisfied by using a single query, while complicated ones require a series of queries spanning a period of time. A search task, consisting of a sequence of search queries serving the same information need, can be treated as an atomic unit for modeling userā€™s search preferences and has been applied in improving the accuracy of search results. However, existing studies on user search tasks mainly focus on applying userā€™s interests in re-ranking search results. Only few studies have examined the effects of utilizing search tasks to assist users in obtaining effective queries. Moreover, fewer existing studies have examined the dynamic characteristics of userā€™s search interests within a search task. Furthermore, even fewer studies have examined approaches to selective personalization for candidate refined queries that are expected to benefit from its application. This study proposes a framework of modeling userā€™s task-based dynamic search interests to address these issues and makes the following contributions. First, task identification: a cross-session based method is proposed to discover tasks by modeling the best-link structure of queries, based on the commonly shared clicked results. A graph-based representation method is introduced to improve the effectiveness of link prediction in a query sequence. Second, dynamic task-level search interest representation: a four-tuple user profiling model is introduced to represent long- and short-term user interests extracted from search tasks and sessions. It models userā€™s interests at the task level to re-rank candidate queries through modules of task identification and update. Third, selective personalization: a two-step personalization algorithm is proposed to improve the rankings of candidate queries for query refinement by assessing the task dependency via exploiting a latent task space. Experimental results show that the proposed TOQUE framework contributes to an increased precision of candidate queries and thus shortened search sessions
    • ā€¦
    corecore