6,160 research outputs found

    A Review of Automated Image Understanding within 3D Baggage Computed Tomography Security Screening

    Get PDF
    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT

    Algorithms for enhanced artifact reduction and material recognition in computed tomography

    Full text link
    Computed tomography (CT) imaging provides a non-destructive means to examine the interior of an object which is a valuable tool in medical and security applications. The variety of materials seen in the security applications is higher than in the medical applications. Factors such as clutter, presence of dense objects, and closely placed items in a bag or a parcel add to the difficulty of the material recognition in security applications. Metal and dense objects create image artifacts which degrade the image quality and deteriorate the recognition accuracy. Conventional CT machines scan the object using single source or dual source spectra and reconstruct the effective linear attenuation coefficient of voxels in the image which may not provide the sufficient information to identify the occupying materials. In this dissertation, we provide algorithmic solutions to enhance CT material recognition. We provide a set of algorithms to accommodate different classes of CT machines. First, we provide a metal artifact reduction algorithm for conventional CT machines which perform the measurements using single X-ray source spectrum. Compared to previous methods, our algorithm is robust to severe metal artifacts and accurately reconstructs the regions that are in proximity to metal. Second, we propose a novel joint segmentation and classification algorithm for dual-energy CT machines which extends prior work to capture spatial correlation in material X-ray attenuation properties. We show that the classification performance of our method surpasses the prior work's result. Third, we propose a new framework for reconstruction and classification using a new class of CT machines known as spectral CT which has been recently developed. Spectral CT uses multiple energy windows to scan the object, thus it captures data across higher energy dimensions per detector. Our reconstruction algorithm extracts essential features from the measured data by using spectral decomposition. We explore the effect of using different transforms in performing the measurement decomposition and we develop a new basis transform which encapsulates the sufficient information of the data and provides high classification accuracy. Furthermore, we extend our framework to perform the task of explosive detection. We show that our framework achieves high detection accuracy and it is robust to noise and variations. Lastly, we propose a combined algorithm for spectral CT, which jointly reconstructs images and labels each region in the image. We offer a tractable optimization method to solve the proposed discrete tomography problem. We show that our method outperforms the prior work in terms of both reconstruction quality and classification accuracy

    Automated X-ray image analysis for cargo security: Critical review and future promise

    Get PDF
    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo

    An Approach for Adaptive Automatic Threat Recognition Within 3D Computed Tomography Images for Baggage Security Screening

    Get PDF
    BACKGROUND: The screening of baggage using X-ray scanners is now routine in aviation security with automatic threat detection approaches, based on 3D X-ray computed tomography (CT) images, known as Automatic Threat Recognition (ATR) within the aviation security industry. These current strategies use pre-defined threat material signatures in contrast to adaptability towards new and emerging threat signatures. To address this issue, the concept of adaptive automatic threat recognition (AATR) was proposed in previous work. OBJECTIVE: In this paper, we present a solution to AATR based on such X-ray CT baggage scan imagery. This aims to address the issues of rapidly evolving threat signatures within the screening requirements. Ideally, the detection algorithms deployed within the security scanners should be readily adaptable to different situations with varying requirements of threat characteristics (e.g., threat material, physical properties of objects). METHODS: We tackle this issue using a novel adaptive machine learning methodology with our solution consisting of a multi-scale 3D CT image segmentation algorithm, a multi-class support vector machine (SVM) classifier for object material recognition and a strategy to enable the adaptability of our approach. Experiments are conducted on both open and sequestered 3D CT baggage image datasets specifically collected for the AATR study. RESULTS: Our proposed approach performs well on both recognition and adaptation. Overall our approach can achieve the probability of detection around 90% with a probability of false alarm below 20%. CONCLUSIONS: Our AATR shows the capabilities of adapting to varying types of materials, even the unknown materials which are not available in the training data, adapting to varying required probability of detection and adapting to varying scales of the threat object

    On the Relevance of Denoising and Artefact Reduction in 3D Segmentation and Classification within Complex Computed Tomography Imagery

    Get PDF
    We evaluate the impact of denoising and Metal Artefact Reduction (MAR) on 3D object segmentation and classification in low-resolution, cluttered dual-energy Computed Tomography (CT). To this end, we present a novel 3D materials-based segmentation technique based on the Dual-Energy Index (DEI) to automatically generate subvolumes for classification. Subvolume classification is performed using an extension of Extremely Randomised Clustering (ERC) forest codebooks, constructed using dense feature-point sampling and multiscale Density Histogram (DH) descriptors. Within this experimental framework, we evaluate the impact on classification accuracy and computational expense of pre-processing by intensity thresholding, Non-Local Means (NLM) filtering, Linear Interpolation-based MAR (LIMar) and Distance-Driven MAR (DDMar) in the domain of 3D baggage security screening. We demonstrate that basic NLM filtering, although removing fewer artefacts, produces state-of-the-art classification results comparable to the more complex DDMar but at a significant reduction in computational cost - bringing into question the importance (in terms of automated CT analysis) of computationally expensive artefact reduction techniques. Overall, it was found that the use of MAR pre-processing approaches produced only a marginal improvement in classification performance ( 10×) when compared to NLM pre-processing

    Enhanced information extraction in the multi-energy x-ray tomography for security

    Full text link
    Thesis (Ph.D.)--Boston UniversityX-ray Computed Tomography (CT) is an effective nondestructive technology widely used for medical diagnosis and security. In CT, three-dimensional images of the interior of an object are generated based on its X-ray attenuation. Conventional CT is performed with a single energy spectrum and materials can only be differentiated based on an averaged measure of the attenuation. Multi-Energy CT (MECT) methods have been developed to provide more information about the chemical composition of the scanned material using multiple energy-selective measurements of the attenuation. Existing literature on MECT is mostly focused on differentiation between body tissues and other medical applications. The problems in security are more challenging due to the larger range of materials and threats which may be found. Objects may appear in high clutter and in different forms of concealment. Thus, the information extracted by the medical domain methods may not be optimal for detection of explosives and improved performance is desired. In this dissertation, learning and adaptive model-based methods are developed to address the challenges of multi-energy material discrimination for security. First, the fundamental information contained in the X-ray attenuation versus energy curves of materials is studied. For this purpose, a database of these curves for a set of explosive and non-explosive compounds was created. The dimensionality and span of the curves is estimated and their space is shown to be larger than two-dimensional, contrary to what is typically assumed. In addition, optimized feature selection methods are developed and applied to the curves and it is demonstrated that detection performance may be improved by using more than two features and when using features different than the standard photoelectric and Compton coefficients. Second, several MECT reconstruction methods are studied and compared. This includes a new structure-preserving inversion technique which can mitigate metal artifacts and provide precise object localization in the estimated parameter images. Finally, a learning-based MECT framework for joint material classification and segmentation is developed, which can produce accurate material labels in the presence of metal and clutter. The methods are tested on simulated and real multi-energy data and it is shown that they outperform previously published MECT techniques
    • …
    corecore