1,342 research outputs found

    JPEG Quantized Coefficient Recovery via DCT Domain Spatial-Frequential Transformer

    Full text link
    JPEG compression adopts the quantization of Discrete Cosine Transform (DCT) coefficients for effective bit-rate reduction, whilst the quantization could lead to a significant loss of important image details. Recovering compressed JPEG images in the frequency domain has attracted more and more attention recently, in addition to numerous restoration approaches developed in the pixel domain. However, the current DCT domain methods typically suffer from limited effectiveness in handling a wide range of compression quality factors, or fall short in recovering sparse quantized coefficients and the components across different colorspace. To address these challenges, we propose a DCT domain spatial-frequential Transformer, named as DCTransformer. Specifically, a dual-branch architecture is designed to capture both spatial and frequential correlations within the collocated DCT coefficients. Moreover, we incorporate the operation of quantization matrix embedding, which effectively allows our single model to handle a wide range of quality factors, and a luminance-chrominance alignment head that produces a unified feature map to align different-sized luminance and chrominance components. Our proposed DCTransformer outperforms the current state-of-the-art JPEG artifact removal techniques, as demonstrated by our extensive experiments.Comment: 13 pages, 8 figure

    Deep Markov Random Field for Image Modeling

    Full text link
    Markov Random Fields (MRFs), a formulation widely used in generative image modeling, have long been plagued by the lack of expressive power. This issue is primarily due to the fact that conventional MRFs formulations tend to use simplistic factors to capture local patterns. In this paper, we move beyond such limitations, and propose a novel MRF model that uses fully-connected neurons to express the complex interactions among pixels. Through theoretical analysis, we reveal an inherent connection between this model and recurrent neural networks, and thereon derive an approximated feed-forward network that couples multiple RNNs along opposite directions. This formulation combines the expressive power of deep neural networks and the cyclic dependency structure of MRF in a unified model, bringing the modeling capability to a new level. The feed-forward approximation also allows it to be efficiently learned from data. Experimental results on a variety of low-level vision tasks show notable improvement over state-of-the-arts.Comment: Accepted at ECCV 201

    Deep Multi-modality Soft-decoding of Very Low Bit-rate Face Videos

    Full text link
    We propose a novel deep multi-modality neural network for restoring very low bit rate videos of talking heads. Such video contents are very common in social media, teleconferencing, distance education, tele-medicine, etc., and often need to be transmitted with limited bandwidth. The proposed CNN method exploits the correlations among three modalities, video, audio and emotion state of the speaker, to remove the video compression artifacts caused by spatial down sampling and quantization. The deep learning approach turns out to be ideally suited for the video restoration task, as the complex non-linear cross-modality correlations are very difficult to model analytically and explicitly. The new method is a video post processor that can significantly boost the perceptual quality of aggressively compressed talking head videos, while being fully compatible with all existing video compression standards.Comment: Accepted by Proceedings of the 28th ACM International Conference on Multimedia(ACM MM),202
    • …
    corecore