1,551 research outputs found

    Learning-based content caching with time-varying popularity profiles

    Get PDF
    Content caching at the small-cell base stations (sBSs) in a heterogeneous wireless network is considered. A cost function is proposed that captures the backhaul link load called the "offloading loss", which measures the fraction of the requested files that are not available in the sBS caches. Previous approaches minimize this offloading loss assuming that the popularity profile of the content is time-invariant and perfectly known. However, in many practical applications, the popularity profile is unknown and time-varying. Therefore, the analysis of caching with non-stationary and statistically dependent popularity profiles (assumed unknown, and hence, estimated) is studied in this paper from a learning-theoretic perspective. A probably approximately correct (PAC) result is derived, in which a high probability bound on the offloading loss difference, i.e., the error between the estimated (outdated) and the optimal offloading loss, is investigated. The difference is a function of the Rademacher complexity of the set of all probability measures on the set of cached content items, the β-mixing coefficient, 1/√t (t is the number of time slots), and a measure of discrepancy between the estimated and true popularity profiles

    Online Learning Models for Content Popularity Prediction In Wireless Edge Caching

    Full text link
    Caching popular contents in advance is an important technique to achieve the low latency requirement and to reduce the backhaul costs in future wireless communications. Considering a network with base stations distributed as a Poisson point process (PPP), optimal content placement caching probabilities are derived for known popularity profile, which is unknown in practice. In this paper, online prediction (OP) and online learning (OL) methods are presented based on popularity prediction model (PPM) and Grassmannian prediction model (GPM), to predict the content profile for future time slots for time-varying popularities. In OP, the problem of finding the coefficients is modeled as a constrained non-negative least squares (NNLS) problem which is solved with a modified NNLS algorithm. In addition, these two models are compared with log-request prediction model (RPM), information prediction model (IPM) and average success probability (ASP) based model. Next, in OL methods for the time-varying case, the cumulative mean squared error (MSE) is minimized and the MSE regret is analyzed for each of the models. Moreover, for quasi-time varying case where the popularity changes block-wise, KWIK (know what it knows) learning method is modified for these models to improve the prediction MSE and ASP performance. Simulation results show that for OP, PPM and GPM provides the best ASP among these models, concluding that minimum mean squared error based models do not necessarily result in optimal ASP. OL based models yield approximately similar ASP and MSE, while for quasi-time varying case, KWIK methods provide better performance, which has been verified with MovieLens dataset.Comment: 9 figure, 29 page

    A Learning-Based Approach to Caching in Heterogenous Small Cell Networks

    Full text link
    A heterogenous network with base stations (BSs), small base stations (SBSs) and users distributed according to independent Poisson point processes is considered. SBS nodes are assumed to possess high storage capacity and to form a distributed caching network. Popular files are stored in local caches of SBSs, so that a user can download the desired files from one of the SBSs in its vicinity. The offloading-loss is captured via a cost function that depends on the random caching strategy proposed here. The popularity profile of cached content is unknown and estimated using instantaneous demands from users within a specified time interval. An estimate of the cost function is obtained from which an optimal random caching strategy is devised. The training time to achieve an ϵ>0\epsilon>0 difference between the achieved and optimal costs is finite provided the user density is greater than a predefined threshold, and scales as N2N^2, where NN is the support of the popularity profile. A transfer learning-based approach to improve this estimate is proposed. The training time is reduced when the popularity profile is modeled using a parametric family of distributions; the delay is independent of NN and scales linearly with the dimension of the distribution parameter.Comment: 12 pages, 5 figures, published in IEEE Transactions on Communications, 2016. arXiv admin note: text overlap with arXiv:1504.0363

    Learning-Based Optimization of Cache Content in a Small Cell Base Station

    Full text link
    Optimal cache content placement in a wireless small cell base station (sBS) with limited backhaul capacity is studied. The sBS has a large cache memory and provides content-level selective offloading by delivering high data rate contents to users in its coverage area. The goal of the sBS content controller (CC) is to store the most popular contents in the sBS cache memory such that the maximum amount of data can be fetched directly form the sBS, not relying on the limited backhaul resources during peak traffic periods. If the popularity profile is known in advance, the problem reduces to a knapsack problem. However, it is assumed in this work that, the popularity profile of the files is not known by the CC, and it can only observe the instantaneous demand for the cached content. Hence, the cache content placement is optimised based on the demand history. By refreshing the cache content at regular time intervals, the CC tries to learn the popularity profile, while exploiting the limited cache capacity in the best way possible. Three algorithms are studied for this cache content placement problem, leading to different exploitation-exploration trade-offs. We provide extensive numerical simulations in order to study the time-evolution of these algorithms, and the impact of the system parameters, such as the number of files, the number of users, the cache size, and the skewness of the popularity profile, on the performance. It is shown that the proposed algorithms quickly learn the popularity profile for a wide range of system parameters.Comment: Accepted to IEEE ICC 2014, Sydney, Australia. Minor typos corrected. Algorithm MCUCB correcte

    A Deep Reinforcement Learning-Based Framework for Content Caching

    Full text link
    Content caching at the edge nodes is a promising technique to reduce the data traffic in next-generation wireless networks. Inspired by the success of Deep Reinforcement Learning (DRL) in solving complicated control problems, this work presents a DRL-based framework with Wolpertinger architecture for content caching at the base station. The proposed framework is aimed at maximizing the long-term cache hit rate, and it requires no knowledge of the content popularity distribution. To evaluate the proposed framework, we compare the performance with other caching algorithms, including Least Recently Used (LRU), Least Frequently Used (LFU), and First-In First-Out (FIFO) caching strategies. Meanwhile, since the Wolpertinger architecture can effectively limit the action space size, we also compare the performance with Deep Q-Network to identify the impact of dropping a portion of the actions. Our results show that the proposed framework can achieve improved short-term cache hit rate and improved and stable long-term cache hit rate in comparison with LRU, LFU, and FIFO schemes. Additionally, the performance is shown to be competitive in comparison to Deep Q-learning, while the proposed framework can provide significant savings in runtime.Comment: 6 pages, 3 figure

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea
    • …
    corecore