1,501 research outputs found

    Mapping, Localization and Path Planning for Image-based Navigation using Visual Features and Map

    Full text link
    Building on progress in feature representations for image retrieval, image-based localization has seen a surge of research interest. Image-based localization has the advantage of being inexpensive and efficient, often avoiding the use of 3D metric maps altogether. That said, the need to maintain a large number of reference images as an effective support of localization in a scene, nonetheless calls for them to be organized in a map structure of some kind. The problem of localization often arises as part of a navigation process. We are, therefore, interested in summarizing the reference images as a set of landmarks, which meet the requirements for image-based navigation. A contribution of this paper is to formulate such a set of requirements for the two sub-tasks involved: map construction and self-localization. These requirements are then exploited for compact map representation and accurate self-localization, using the framework of a network flow problem. During this process, we formulate the map construction and self-localization problems as convex quadratic and second-order cone programs, respectively. We evaluate our methods on publicly available indoor and outdoor datasets, where they outperform existing methods significantly.Comment: CVPR 2019, for implementation see https://github.com/janinethom

    Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization

    Full text link
    Many robotics applications require precise pose estimates despite operating in large and changing environments. This can be addressed by visual localization, using a pre-computed 3D model of the surroundings. The pose estimation then amounts to finding correspondences between 2D keypoints in a query image and 3D points in the model using local descriptors. However, computational power is often limited on robotic platforms, making this task challenging in large-scale environments. Binary feature descriptors significantly speed up this 2D-3D matching, and have become popular in the robotics community, but also strongly impair the robustness to perceptual aliasing and changes in viewpoint, illumination and scene structure. In this work, we propose to leverage recent advances in deep learning to perform an efficient hierarchical localization. We first localize at the map level using learned image-wide global descriptors, and subsequently estimate a precise pose from 2D-3D matches computed in the candidate places only. This restricts the local search and thus allows to efficiently exploit powerful non-binary descriptors usually dismissed on resource-constrained devices. Our approach results in state-of-the-art localization performance while running in real-time on a popular mobile platform, enabling new prospects for robotics research.Comment: CoRL 2018 Camera-ready (fix typos and update citations

    Learning View-Model Joint Relevance for 3D Object Retrieval

    Get PDF
    3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to incomplete information for 3D object representation. In this paper, we propose to jointly learn the view-model relevance among 3D objects for retrieval, in which the 3D objects are formulated in different graph structures. With the view information, the multiple views of 3D objects are employed to formulate the 3D object relationship in an object hypergraph structure. With the model data, the model-based features are extracted to construct an object graph to describe the relationship among the 3D objects. The learning on the two graphs is conducted to estimate the relevance among the 3D objects, in which the view/model graph weights can be also optimized in the learning process. This is the first work to jointly explore the view-based and model-based relevance among the 3D objects in a graph-based framework. The proposed method has been evaluated in three data sets. The experimental results and comparison with the state-of-the-art methods demonstrate the effectiveness on retrieval accuracy of the proposed 3D object retrieval method

    Video Registration in Egocentric Vision under Day and Night Illumination Changes

    Full text link
    With the spread of wearable devices and head mounted cameras, a wide range of application requiring precise user localization is now possible. In this paper we propose to treat the problem of obtaining the user position with respect to a known environment as a video registration problem. Video registration, i.e. the task of aligning an input video sequence to a pre-built 3D model, relies on a matching process of local keypoints extracted on the query sequence to a 3D point cloud. The overall registration performance is strictly tied to the actual quality of this 2D-3D matching, and can degrade if environmental conditions such as steep changes in lighting like the ones between day and night occur. To effectively register an egocentric video sequence under these conditions, we propose to tackle the source of the problem: the matching process. To overcome the shortcomings of standard matching techniques, we introduce a novel embedding space that allows us to obtain robust matches by jointly taking into account local descriptors, their spatial arrangement and their temporal robustness. The proposal is evaluated using unconstrained egocentric video sequences both in terms of matching quality and resulting registration performance using different 3D models of historical landmarks. The results show that the proposed method can outperform state of the art registration algorithms, in particular when dealing with the challenges of night and day sequences

    Indexing and Retrieval of 3D Articulated Geometry Models

    Get PDF
    In this PhD research study, we focus on building a content-based search engine for 3D articulated geometry models. 3D models are essential components in nowadays graphic applications, and are widely used in the game, animation and movies production industry. With the increasing number of these models, a search engine not only provides an entrance to explore such a huge dataset, it also facilitates sharing and reusing among different users. In general, it reduces production costs and time to develop these 3D models. Though a lot of retrieval systems have been proposed in recent years, search engines for 3D articulated geometry models are still in their infancies. Among all the works that we have surveyed, reliability and efficiency are the two main issues that hinder the popularity of such systems. In this research, we have focused our attention mainly to address these two issues. We have discovered that most existing works design features and matching algorithms in order to reflect the intrinsic properties of these 3D models. For instance, to handle 3D articulated geometry models, it is common to extract skeletons and use graph matching algorithms to compute the similarity. However, since this kind of feature representation is complex, it leads to high complexity of the matching algorithms. As an example, sub-graph isomorphism can be NP-hard for model graph matching. Our solution is based on the understanding that skeletal matching seeks correspondences between the two comparing models. If we can define descriptive features, the correspondence problem can be solved by bag-based matching where fast algorithms are available. In the first part of the research, we propose a feature extraction algorithm to extract such descriptive features. We then convert the skeletal matching problems into bag-based matching. We further define metric similarity measure so as to support fast search. We demonstrate the advantages of this idea in our experiments. The improvement on precision is 12\% better at high recall. The indexing search of 3D model is 24 times faster than the state of the art if only the first relevant result is returned. However, improving the quality of descriptive features pays the price of high dimensionality. Curse of dimensionality is a notorious problem on large multimedia databases. The computation time scales exponentially as the dimension increases, and indexing techniques may not be useful in such situation. In the second part of the research, we focus ourselves on developing an embedding retrieval framework to solve the high dimensionality problem. We first argue that our proposed matching method projects 3D models on manifolds. We then use manifold learning technique to reduce dimensionality and maximize intra-class distances. We further propose a numerical method to sub-sample and fast search databases. To preserve retrieval accuracy using fewer landmark objects, we propose an alignment method which is also beneficial to existing works for fast search. The advantages of the retrieval framework are demonstrated in our experiments that it alleviates the problem of curse of dimensionality. It also improves the efficiency (3.4 times faster) and accuracy (30\% more accurate) of our matching algorithm proposed above. In the third part of the research, we also study a closely related area, 3D motions. 3D motions are captured by sticking sensor on human beings. These captured data are real human motions that are used to animate 3D articulated geometry models. Creating realistic 3D motions is an expensive and tedious task. Although 3D motions are very different from 3D articulated geometry models, we observe that existing works also suffer from the problem of temporal structure matching. This also leads to low efficiency in the matching algorithms. We apply the same idea of bag-based matching into the work of 3D motions. From our experiments, the proposed method has a 13\% improvement on precision at high recall and is 12 times faster than existing works. As a summary, we have developed algorithms for 3D articulated geometry models and 3D motions, covering feature extraction, feature matching, indexing and fast search methods. Through various experiments, our idea of converting restricted matching to bag-based matching improves matching efficiency and reliability. These have been shown in both 3D articulated geometry models and 3D motions. We have also connected 3D matching to the area of manifold learning. The embedding retrieval framework not only improves efficiency and accuracy, but has also opened a new area of research

    Hybrid Scene Compression for Visual Localization

    Full text link
    Localizing an image wrt. a 3D scene model represents a core task for many computer vision applications. An increasing number of real-world applications of visual localization on mobile devices, e.g., Augmented Reality or autonomous robots such as drones or self-driving cars, demand localization approaches to minimize storage and bandwidth requirements. Compressing the 3D models used for localization thus becomes a practical necessity. In this work, we introduce a new hybrid compression algorithm that uses a given memory limit in a more effective way. Rather than treating all 3D points equally, it represents a small set of points with full appearance information and an additional, larger set of points with compressed information. This enables our approach to obtain a more complete scene representation without increasing the memory requirements, leading to a superior performance compared to previous compression schemes. As part of our contribution, we show how to handle ambiguous matches arising from point compression during RANSAC. Besides outperforming previous compression techniques in terms of pose accuracy under the same memory constraints, our compression scheme itself is also more efficient. Furthermore, the localization rates and accuracy obtained with our approach are comparable to state-of-the-art feature-based methods, while using a small fraction of the memory.Comment: Published at CVPR 201

    Leading Undergraduate Students to Big Data Generation

    Get PDF
    People are facing a flood of data today. Data are being collected at unprecedented scale in many areas, such as networking, image processing, virtualization, scientific computation, and algorithms. The huge data nowadays are called Big Data. Big data is an all encompassing term for any collection of data sets so large and complex that it becomes difficult to process them using traditional data processing applications. In this article, the authors present a unique way which uses network simulator and tools of image processing to train students abilities to learn, analyze, manipulate, and apply Big Data. Thus they develop students handson abilities on Big Data and their critical thinking abilities. The authors used novel image based rendering algorithm with user intervention to generate realistic 3D virtual world. The learning outcomes are significant

    3D Shape Knowledge Graph for Cross-domain and Cross-modal 3D Shape Retrieval

    Full text link
    With the development of 3D modeling and fabrication, 3D shape retrieval has become a hot topic. In recent years, several strategies have been put forth to address this retrieval issue. However, it is difficult for them to handle cross-modal 3D shape retrieval because of the natural differences between modalities. In this paper, we propose an innovative concept, namely, geometric words, which is regarded as the basic element to represent any 3D or 2D entity by combination, and assisted by which, we can simultaneously handle cross-domain or cross-modal retrieval problems. First, to construct the knowledge graph, we utilize the geometric word as the node, and then use the category of the 3D shape as well as the attribute of the geometry to bridge the nodes. Second, based on the knowledge graph, we provide a unique way for learning each entity's embedding. Finally, we propose an effective similarity measure to handle the cross-domain and cross-modal 3D shape retrieval. Specifically, every 3D or 2D entity could locate its geometric terms in the 3D knowledge graph, which serve as a link between cross-domain and cross-modal data. Thus, our approach can achieve the cross-domain and cross-modal 3D shape retrieval at the same time. We evaluated our proposed method on the ModelNet40 dataset and ShapeNetCore55 dataset for both the 3D shape retrieval task and cross-domain 3D shape retrieval task. The classic cross-modal dataset (MI3DOR) is utilized to evaluate cross-modal 3D shape retrieval. Experimental results and comparisons with state-of-the-art methods illustrate the superiority of our approach

    Learning 3D Scene Priors with 2D Supervision

    Full text link
    Holistic 3D scene understanding entails estimation of both layout configuration and object geometry in a 3D environment. Recent works have shown advances in 3D scene estimation from various input modalities (e.g., images, 3D scans), by leveraging 3D supervision (e.g., 3D bounding boxes or CAD models), for which collection at scale is expensive and often intractable. To address this shortcoming, we propose a new method to learn 3D scene priors of layout and shape without requiring any 3D ground truth. Instead, we rely on 2D supervision from multi-view RGB images. Our method represents a 3D scene as a latent vector, from which we can progressively decode to a sequence of objects characterized by their class categories, 3D bounding boxes, and meshes. With our trained autoregressive decoder representing the scene prior, our method facilitates many downstream applications, including scene synthesis, interpolation, and single-view reconstruction. Experiments on 3D-FRONT and ScanNet show that our method outperforms state of the art in single-view reconstruction, and achieves state-of-the-art results in scene synthesis against baselines which require for 3D supervision.Comment: Video: https://youtu.be/YT7MEdygRoY Project: https://yinyunie.github.io/sceneprior-page
    corecore